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Research Agenda on Robo-Advising
1 Common Perception:

Robo-advising = automated advice for portfolio allocation



Research Agenda on Robo-Advising

BUT households’ decisions are more complex!

Robo-Advising: automated advice for ANY household choice

(D’Acunto and Rossi, 2021)
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Motivation

Algorithms are ubiquitous, potentially bringing huge benefits across household markets.

BUT lack of trust in algorithms may limit the scalability of tech-enabled innovation

Algorithm aversion:

Barrier to tech adoption, repeatedly confirmed in psych lab findings (Dietvorst et al., 2015).

Little consensus about psychological underpinnings (Burton et al., 2020).

Are there natural limits to the algo-adoption arising from human preferences and beliefs?

This paper:

Understanding the different components of algorithm aversion.

Quantifying their relative importance using the important setting of hybrid robo-advice.



This Paper

What drives algorithm aversion?

Theory: Preference- and belief-based aversion; Structural estimation: Investment robo-advice

1 Model: Dynamic Model of Automation Adoption

Robo-advisor with uncertain performance

Algo aversion: disutility, uncertainty, pessimism

2 Data: US Hybrid robo-advisor

Robo-portfolio plus quasi-random assignment to high/low-“type" human advisors.

3 Reduced-form: Causal impact of the human component

High-type human advice reduces base quit rate by 23%
Value of human advice especially evident in bad market conditions

4 Structural inference

Ongoing disutility (preference) more important than pessimism (belief).

Human advice reduces uncertainty by > 90%



General Model of Automation Adoption

NOTE:

We also provide a version of this general model for a Campbell-Viceira style portfolio choice problem

featuring an investor with log utility of terminal wealth, who can sign-up for robo-advice, and faces

disutility when interacting with an algorithm.

test Link to Portfolio Choice Model



General Model of Automation Adoption

Investors indexed by i = 1, . . . , I can use automated service for up to T periods.

Investors quit at (endogenously) chosen time δi, where δi ∈ {1, . . . , T}.

Quality of the service: θ ∈ R.

Investors randomly assigned to advisors/experts indexed by j = 1, . . . , J, who affect:

1 clients’ utility from consuming the service

2 clients’ beliefs at sign-up (t = 0): θ ∼ N
(

m
j
0,

1

τ
j

0

)



General Model of Automation Adoption

Post-enrollment, t ∈ {1, . . . , δi}, learning from performance:

yi
t = θ + ui

t with ui
t ∼ N

(
0,

1

τy

)

At date t, beliefs about θ updated using Bayes’ rule using
{

yi
1, . . . , yi

t

}
.

Beliefs about θ are updated using the Kalman filter:

θ ∼ N

(
m

i,j
t ,

1

τ j
t

)

m
i,j
t = m

i,j
t−1 +

τy

τ
j

t−1+τy

(
yi

t − m
i,j
t−1

)
& τ j

t = τ j
0 + tτy

Note: depends on both i and j



General Model of Automation Adoption

Bellman Equation for the investor’s problem:

V
j
t (m) = max

{
uj (m) + Ê

j
[

Vt+1

(
m′
)∣∣m

]
, 0
}

V
j
t (m): continuation value of client still enrolled at date t with expectations m

i,j
t = m

uj (m): expected flow of utility for a client who matches with expert j

Ê
j [Vt+1 (m

′)|m]: client’s expected continuation value if enrolled until t + 1

Utility investor can obtain outside the service normalized to “0"



General Model of Automation Adoption

For t < T , optimal to quit on date t, i.e. δi = t, if and only if:

uj (m) + Ê
j
[

Vt+1

(
m′
)∣∣m

]
≤ 0.

For structural estimation, we add implementation error: ξi
t ∼ N

(
0, 1

τξ

)

(generates cross-sectional variation in quit rates conditional on performance)

⇒ For t < T , δi = t if and only if:

uj
(
m − ξi

t

)
+ Ê

j
[

Vt+1

(
m′
)∣∣m

]
≤ 0.



Structural Mapping



Structural Estimation

Ultimate Goal: Estimate all parameters from simulated dynamics

This draft: Analytical estimation equation for three-period model: T = 2

Advantage: Clarifies parameter identification

Sign up at t = 0. δi = t if and only if:

uj
(

m
i,j
1 − ξi

1

)
+ Ê

j
[

V2

(
m

i,j
2

)∣∣∣mi,j
1

]

︸ ︷︷ ︸
≡0

≤ 0

⇒ uj
(

m
i,j
1 − ξi

1

)
≤ 0

⇒ uj

(
m

i,j
0

τ j
0

τ j
0 + τy

+
τy

τ j
0 + τy

yi
1 − ξi

i

)
≤ 0



Structural Estimation

Define φj ≡
(
uj
)−1

(0):

Critical value for quality that makes investor i indifferent between quitting and continuing.

Interpretable as the fixed cost/disutility of participation when matched with expert j.

⇒ Equivalent quitting condition:

φj −
τ j

0

τ j
0 + τy

m
j
0

︸ ︷︷ ︸
Baseline quit rate

−
τy

τ j
0 + τy︸ ︷︷ ︸

Sensitivity

yi
1 + ξi

1 ≥ 0

Baseline quit rate ↑ if

Disutility of participation increases: φj↑
Prior belief about robo-performance decreases: m

j
0↓

Sensitivity ↑ if

precision of the performance signal increases: τy ↑

precision of the prior decreases: τ j
0↓



Structural Estimation

Empirical estimation of the model

1 Group advisors into high retention (H) and low retention (L) using historical performance

2 Estimate separately preferences and belief parameters for investors assigned to

high-retention advisors:
{
φH,mH

0 , τ
H
0

}

low-retention advisors:
{
φL,mL

0 , τ
L
0

}

For causal interpretation:

1 Assignment of client i to human expert j should be independent of
{
ξi

t , ui
t

}
.

2 Make sure the advisor-type measure is not mechanically related to clients’ attrition

→ use leave-one-out estimator throughout our analysis



Data



Advised Investor Characteristics
Panel A. Demographic Characteristics

N mean sd p25 p50 p75

Age 54,325 63.8 12.1 57 65 72
Male 54,744 0.6 0.5 0.0 1.0 1.0
Tenure 54,744 13.5 9.1 3.8 13.7 20.2

Panel B. Portfolio-Related Characteristics
N mean sd p25 p50 p75

Wealth 54,744 $758,378 $821,029 $210,800 $478,929 $981,330
NumAssets 54,744 7.95 4.91 5.0 6.0 9.0
PctVGProducts 54,744 0.97 0.07 1.0 1.0 1.0

Panel C. Asset Allocation Characteristics
N mean sd p25 p50 p75

PctMutualFunds 54,744 0.952 0.102 0.960 1.000 1.000
PctCash 54,744 0.018 0.046 0.000 0.000 0.008
PctETF 54,744 0.008 0.030 0.000 0.000 0.000
PctStocks 54,744 0.014 0.045 0.000 0.000 0.000
PctBonds 54,744 0.000 0.002 0.000 0.000 0.000

Panel D. Characteristics of Mutual Funds Held
N mean sd p25 p50 p75

AcctIndex 54,744 0.828 0.178 0.745 0.858 1.000
MgtFee 54,717 0.072 0.024 0.059 0.064 0.075
ExpRatio 54,707 0.093 0.027 0.078 0.083 0.096
TurnRatio 54,685 0.268 0.120 0.190 0.280 0.337



Performance of Robo-advised and Self-directed Investors

Robo assigns 5 glide paths based on objectives / horizon /demographics

Mostly 4 indexed mutual funds: VTSAX, VTIAX, VBTLX, VTABX

70% cross-section of returns explained by investors’ age

5 Principal Components: 80% of the variation in equity share

Clustering: 96% of investors assigned to 2 glide-paths



Measuring Advisor Type

Investors with Assets above $500K are assigned to an advisor

Revealed preference approach to measuring advisor type using a leave-one-out estimator

Retention rate of advisor j and client i is:

Ratio of clients assigned to advisor j that do not quit excluding from the computations:

Client i

The date t at which client i quits (takes care of cross-sectional correlation in attrition)

Results are robust to:

Splitting dataset in half

Different specifications for controlling cross-sectional correlation in attrition



Clients’ Assignment to Advisors-I

During onboarding, clients are asked for the characteristics

The roboadvisor generates a financial plan

To complete sign-up, investors have to meet with an advisor

Investors give their availability

A scheduling system tracks advisors’ availability

All advisors have the same target number of clients

Advisor Managers determine advisors’ onboarding rate

⇒ Assumption:

Investors’ assignment to Advisors is quasi-random, conditional on factors driving onboarding.



Validating Quasi-Random Assignment-I

High Retention Low Retention Diff
mean N mean N mean t-stat N

Age 64.540 24,514 65.657 23,511 1.117*** (3.33) 48,025
Male 0.577 25,739 0.618 24,085 0.041*** (4.76) 49,824
Tenure 14.666 25,739 15.635 24,085 0.969*** (3.03) 49,824

Wealth 946,754 25,739 993,861 24,085 47,107 (0.39) 49,824
NumAssets 10.717 25,739 11.438 24,085 0.721 (1.69) 49,824
PctVGProducts 0.853 25,706 0.850 24,062 -0.003 (-0.81) 49,768

PctMutualFunds 0.666 25,706 0.672 24,062 0.006 (0.61) 49,768
PctCash 0.234 25,706 0.226 24,062 -0.007 (-0.67) 49,768
PctETF 0.035 25,706 0.034 24,062 0.000 (-0.27) 49,768
PctStocks 0.046 25,706 0.047 24,062 0.001 (0.84) 49,768
PctBonds 0.002 25,706 0.002 24,062 0.000** (2.65) 49,768

AcctIndex 0.436 25,739 0.438 24,084 0.002 (0.14) 49,823
MgtFee 0.147 23,877 0.147 22,931 0.001 (0.28) 46,808
ExpRatio 0.209 23,299 0.206 22,396 -0.003 (-0.18) 45,695
TurnRatio 0.328 22,918 0.343 21,787 0.016** (2.16) 44,705

Ret. Pre-PAS 0.051 22,040 0.045 20,884 -0.005 (-0.98) 42,924
Adj. Ret. Pre-PAS -0.007 22,040 -0.009 20,884 -0.002 (-1.64) 42,924

⇒ Investors assigned to low- and high-retention advisors are virtually indistinguishable



Validating Quasi-Random Assignment-II

(a) All Advisors (b) High Retention; Low Retention

⇒ High- and Low-retention advisors are assigned clients at the same rate



Empirical Estimates



Heterogeneity in Client Retention and Advisor Type

(a) All Advisors (b) Excluding 10% of Advisors with Few clients

Advisors have different (scaled) client retention in the cross-section

But advisor fixed effect has no explanatory power for returns



Non Parametric Survival Estimates-I

Compute advisors’ retention using leave-one-out estimator

Split them into two groups:

Type 0: advisor with leave-one-out retention below median

Type 1: advisors with leave-one-out retention above median

Take all investors signing up for PAS

Estimate Ŝ(t) = Πi:ti≤t

(
1 − di

ni

)
for each group

where:

ti: time when at least one investor quits

di: number of clients quitting robo-advice at time t

ni: number of clients who have stayed with robo-advice



Non Parametric Survival Estimates-II

(a) All Advisors (b) Excluding 10% of Advisors with Few clients

Cox Model: clients assigned to Type-1 human advisors have 25.4% lower hazard



Effect of Human Advice Across Market Conditions-I

Regression Results:

Dummy_quiti,t = α+ β I{MKT_RETt−1<0} + γ I{Type1_Advisori=1}

+ δ I{MKT_RETt−1<0} × I{Type1_Advisori=1} + ǫi,t,

where

Dummy_quiti,t: 1 if investor i quits in month t;

I{MKT_RETt−1<0}: 1 if market returns are negative in month t-1

I{Type1_Advisori=1}: 1 if investor i is assigned to a high-retention advisor



Effect of Human Advice Across Market Conditions-II

CRSP Return Investor Return CRSP Volatility Investor Volatility

Bad Market 0.136*** 0.145*** 0.125*** 0.117***
(2.98) (3.96) (3.20) (4.02)

Type1_Advisor -0.086*** -0.078*** -0.051*** -0.056***
(-4.74) (-4.03) (-3.14) (-4.41)

Interaction -0.123*** -0.123*** -0.102*** -0.091***
(-3.77) (-3.90) (-3.21) (-3.61)

Constant 0.369*** 0.359*** 0.325*** 0.328***
(17.70) (16.23) (17.78) (17.87)

Clustering Date&User Date&User Date&User Date&User

R-square 0.00011 0.00013 0.00014 0.00013
N 938,314 938,314 938,314 938,314



Effect of Human Advice Across Market Conditions-III

Using Column (1) coefficients:

(a) Good Market Conditions (b) Poor Market Conditions

→ Low Retention advisors lose more clients in bad markets

→ High Retention advisors perform similarly across market conditions



Structural Mapping—Empirics-I

Baseline quit rates:

φL −
τ

L
0

τ
L
0 +τy

mL
0

∧

=0.369 ∗ 12 = 4.43%

φH −
τ

H
0

τ
H
0 +τy

mH
0

∧

=(0.369 − 0.086) ∗ 12 = 3.40%

⇒ High-type advisor reduces baseline quit rates by 1 − 3.4/4.43 = 23.25%

Sensitivity to performance:

τy

τ
L
0 +τy

∧

= 0.136 ∗ 12 = 1.63%

τy

τ
H
0 +τy

∧

= (0.136 − 0.123) ∗ 12 = 0.16%

⇒ High-type advisor reduces sensitivity to performance by 1 − 0.16/1.63 = 90.18%



Structural Mapping—Empirics-II

Does sensitivity vary with tenure?

Short Tenure Long Tenure

Bad Market 0.219*** 0.044
(7.69) (1.36)

Type1_Advisor -0.057*** -0.089***
(-3.29) (-3.62)

Interaction -0.158*** -0.102**
(-3.55) (-2.19)

Constant 0.302*** 0.417***
(23.77) (16.95)

Long tenure investors : φL
−

τ L
0

τ L
0 + τy

m
L
0

︸ ︷︷ ︸
≃0 (convergence)

∧

≃ φ̂L =0.417 ∗ 12 = 5.00%

φH
−

τH
0

τH
0 + τy

m
H
0

︸ ︷︷ ︸
≃0 (convergence)

∧

≃ φ̂H =(0.417 − 0.089) ∗ 12 = 3.94%

⇒ High-type advisor reduces baseline fixed cost/disutility by 1 − 3.94/5 = 21.2%



Conclusions

We present a model of algorithm aversion featuring:

Learning about algorithm’s ability

Ongoing disutility from using the algorithmic solution

We map the model to the real world using

Data from a hybrid robo-advisor (PAS)

Quasi-random assignment of clients to advisors

Main findings

Significant algo aversion reduced by human advisors

High-type advisors retain more clients in turbulent times

Experienced clients react less to market turbulence

Uncertainty and disutility channels of algorithm aversion are structurally most important



Appendix Slides



Model Specialized to Portfolio Choice and Robo-advice-I

Investor can allocate fraction αt ≥ 0 to a robo-advisor. 1 − αt invested outside portfolio.

Client’s utility is wT = ln (WT), where WT is the final wealth.

When robo-advised, client suffers a fixed cost f j: depends on the identity of human advisor.

Log return on the outside portfolio is deterministic and given by r̄.

Robo-advisor generates stochastic log returns given by ri
t+1 = r̄ + θ + ui

t+1.

Investor’s beliefs about θ, as a function of her human advisor j, are as in the general model.

Investor’s log wealth, evolves according to the following approximate law of motion:

wi
t+1 − wt ≃ r̄ + αty

i
t+1 +

1

2
σ2αt (1 − αt), where σ2 = 1/τytest Proof (1)

test Back



Model Specialized to Portfolio Choice and Robo-advice-II

Conjecture that the investor’s continuation value, if still enrolled at date t < T , is:

Ft (w,m) = w + (T − t) r̄ + Vt (m) .

At date t, two options:

Quit ⇒ final utility takes the deterministic value w + (T − t) r̄.

Stay robo-advised with an optimally chosen portfolio weight αt.

Investor’s Bellman Equation:

Ft (w,m) = max

{
w + (T − t) r̄,−f j +max

α≥0
Ê

j
[
Ft+1

(
w′,m′

)
|w,m, αt = α

]}
(2)

test Back



Model Specialized to Portfolio Choice and Robo-advice-III

Substitute conjecture and law of motion of wealth to write the last term of Equation (??) as:

Ê
j
[
Ft+1

(
w′,m′

)
|w,m, αt = α

]
= w′ + (T − (t + 1)) r̄ + Ê

j
[
Vt

(
m′
)
|m
]

= w+(T − t) r̄ + αm +
1

2
σ2α (1 − α) + Ê

j
[
Vt

(
m′
)
|m
]

(3)

where we use that: m = Ê
j [y′|m] by definition

Inner maximization in Equation (??) is solved by optimal portfolio weight

α̂ = max

{
m + 1

2σ
2

σ2
, 0

}
,

test Back



Model Specialized to Portfolio Choice and Robo-advice-IV
The value of (??) is:

E [Ft+1 (w
′,m′) |w,m, αt = α̂] = w + (T − t) r̄ +

(
m +

1

2
σ2

)
α̂−

1

2
σ2α̂2 + Ê

j [Vt+1 (m
′) |m]

= w + (T − t) r̄ + Ê
j [Vt+1 (m

′) |m] +
1

2
[SR (m)]

2
,

where

SR (m) =

{
0, m + 1

2
σ2 < 0,

m+ 1
2
σ

2

σ
, otherwise.

Substitute this into (??), together with the conjecture solution, to obtain:

Vt (m) = max




−f j +

1

2
[SR (m)]

2

︸ ︷︷ ︸
≡uj(m)

+ Ê
j [Vt+1 (m

′) |m] , 0





,

which maps into our general model when the investor’s utility function is:

uj (m) = −f j +
1

2
[SR (m)]

2
. Back



Derivation of Intertemporal Budget Constraint-I
Here we provide the derivation of the law of motion of wealth, i.e., Equation (??).

Consider continuous-time model where per-unit value Pt of robo portfolio follows:

dPt

Pt

=

(
r̄ + θ +

1

2
σ2

)
dt + σdZt,

where Zt is a standard Brownian Motion

Discrete-time representation:

rt+1 ≡ log

(
Pt+1

Pt

)
= r̄ + θ + σut+1, where ut+1 = Zt+1 − Zt

Outside portfolios evolves according to

dBt

Bt

= r̄dt

test Back



Derivation of Intertemporal Budget Constraint-II

Investor’s wealth evolves according to:

dWt

Wt

= αt

dPt

Pt

+ (1 − αt)
dBt

Bt

= αt

[(
r̄ + θ +

1

2
σ2

)
dt + σdZt

]
+ (1 − αt) r̄dt

=

[
αt

(
r̄ + θ +

1

2
σ2

)
+ (1 − αt) r̄

]
Wtdt + αtσWtdZt

Converting to log returns, and applying Ito’s lemma to f (W) = logW, we obtain:

d logWt = df (Wt) = f ′ (Wt) dWt +
1

2
f ′′ (Wt) (dWt)

2
dt

=

[
αt

(
r̄ + θ +

1

2
σ2

)
+ (1 − αt) r̄

]
dt + αtσdZt −

1

2
(αtσ)

2
dt

=

[
αt (r̄ + θ) + (1 − αt) r̄ +

1

2
σ2αt (1 − αt)

]
dt + αtσdZt

test Back



Derivation of Intertemporal Budget Constraint-III

For discrete time approximation, set dt = 1 to get:

logW i
t+1 − logWt = αt (r̄ + θ) + (1 − αt) r̄ +

1

2
σ2αt (1 − αt) + αtσut+1

= αt (r̄ + θ + σut+1) + (1 − αt) r̄ +
1

2
σ2αt (1 − αt)

= αtrt+1 + (1 − αt) r̄ +
1

2
σ2αt (1 − αt)

= r̄ + αt (rt+1 − r̄) +
1

2
σ2αt (1 − αt)

= r̄ + αtyt+1 +
1

2
σ2αt (1 − αt) ,

which establishes Equation (??), where we have again used ut+1 = Zt+1 − Zt.

test Back


