Do Saving Nudges Cause Borrowing? Evidence from a Mega Study

Paolina C. Medina* Michaela Pagel**

*Mays Business School of Texas A\&M University
**Columbia Business School, NBER, \& CEPR

Motivation

- Several policies in place aimed at increasing savings, a growing number use nudges (Benartzi et al., 2017)

Motivation

- Several policies in place aimed at increasing savings, a growing number use nudges (Benartzi et al., 2017)
- Based on the assumption that savings are financed with decreases in consumption (Thaler, 1994)

Motivation

- Several policies in place aimed at increasing savings, a growing number use nudges (Benartzi et al., 2017)
- Based on the assumption that savings are financed with decreases in consumption (Thaler, 1994)
- Yet, often focus only on immediate outcome, without looking where the money comes from (Beshears and Kosowsky, 2020)

Motivation

- Several policies in place aimed at increasing savings, a growing number use nudges (Benartzi et al., 2017)
- Based on the assumption that savings are financed with decreases in consumption (Thaler, 1994)
- Yet, often focus only on immediate outcome, without looking where the money comes from (Beshears and Kosowsky, 2020)
- This paper: Do saving nudges cause borrowing?

Motivation

- This paper: Do saving nudges cause borrowing?

Direct policy relevance, specially in light of credit card debt puzzle: co-holding of high interest debt and low interest savings (Sussman and O'brien, 2016; Telyukova, 2013; Haliassos and Reiter, 2005) among others)

This paper

- Large-scale field experiment (3.1 million subjects) encouraging individuals to save. Main lever: SMS messages

This paper

- Large-scale field experiment (3.1 million subjects) encouraging individuals to save. Main lever: SMS messages
- Rich panel data of individual credit cards and checking accounts transactions and balances

This paper

- Large-scale field experiment (3.1 million subjects) encouraging individuals to save. Main lever: SMS messages
- Rich panel data of individual credit cards and checking accounts transactions and balances
- We measure rolled-over debt (actual borrowing) and not only credit card balances (Beshears et al., 2019; Chetty et al., 2014), as well as spending with credit and debit cards and ATM withdrawals

This paper

- We explain changes in balance sheet by looking at spending patterns

This paper

- We explain changes in balance sheet by looking at spending patterns
- We provide new facts about the simultaneous holding of high interest debt and low interest savings

This paper

- We explain changes in balance sheet by looking at spending patterns
- We provide new facts about the simultaneous holding of high interest debt and low interest savings
- We uncover significant treatment effect heterogeneity using ML for causal inference

What we do: Overview

- Focus on individuals whose observable characteristics predict a large treatment effect
- Causal forest to predict for each individual a treatment effect using all pre-treatment covariates (no-overfitting (Athey et al., 2019))

What we do: Overview

- Focus on individuals whose observable characteristics predict a large treatment effect
- Causal forest to predict for each individual a treatment effect using all pre-treatment covariates (no-overfitting (Athey et al., 2019))
- Select customers in the top quartile of the predicted treatment effect distribution
(Chernozhukov et al., 2018)

What we do: Overview

- Focus on individuals whose observable characteristics predict a large treatment effect
- Causal forest to predict for each individual a treatment effect using all pre-treatment covariates (no-overfitting (Athey et al., 2019))
- Select customers in the top quartile of the predicted treatment effect distribution
(Chernozhukov et al., 2018)

What we do: Overview

- Focus on individuals whose observable characteristics predict a large treatment effect
- Causal forest to predict for each individual a treatment effect using all pre-treatment covariates (no-overfitting (Athey et al., 2019))
- Select customers in the top quartile of the predicted treatment effect distribution (Chernozhukov et al., 2018)
- Were increased savings accompanied by an increase in borrowing? changes in spending or credit card repayment behavior?

Findings in a nutshell

- For this individuals who had a credit card, the increase in savings estimate is 6.1% on a baseline savings of $31,702 \mathrm{MXN}$ in their control group, i.e., an increase of $1,948 \mathrm{MXN}$

Findings in a nutshell

- For this individuals who had a credit card, the increase in savings estimate is 6.1% on a baseline savings of $31,702 \mathrm{MXN}$ in their control group, i.e., an increase of $1,948 \mathrm{MXN}$
- There are no significant changes in credit card interest -For every $\$ 1$ increase in savings, we can rule out a $\$ 0.01$ increase in borrowing cost

Findings in a nutshell

- For this individuals who had a credit card, the increase in savings estimate is 6.1% on a baseline savings of 31,702 MXN in their control group, i.e., an increase of $1,948 \mathrm{MXN}$
- There are no significant changes in credit card interest -For every $\$ 1$ increase in savings, we can rule out a $\$ 0.01$ increase in borrowing cost
- Reduction in spending (measured by ATM withdrawals and card spending)

Findings in a nutshell

- For individuals who had a credit card and paid interest at baseline, we find a 5.6% increase in savings (1295 MXN per month)

Findings in a nutshell

- For individuals who had a credit card and paid interest at baseline, we find a 5.6% increase in savings (1295 MXN per month)
- We find no significant increases in credit card interest

Findings in a nutshell

- For individuals who had a credit card and paid interest at baseline, we find a 5.6% increase in savings (1295 MXN per month)
- We find no significant increases in credit card interest
- No significant increases in credit card repayment following the intervention \rightarrow saving nudges exacerbated the credit card debt puzzle

Findings in a nutshell

- Saving decisions are uncorrelated with the probability of rolling-over credit card debt and with credit card interest rates

Findings in a nutshell

- Saving decisions are uncorrelated with the probability of rolling-over credit card debt and with credit card interest rates
- No evidence of heterogeneity in borrowing response

Experimental design

- Field experiment: $3,054,438$ customers (374,893 in control group) were sent (bi-)weekly savings messages
- The intervention lasted 7 weeks in the fall of 2019
- Encouragements to save were sent via SMS and on ATM screens at the end of a transaction

Experimental pool

- Random sample from the universe of Banorte customers satisfying the following characteristics:

1. Had a valid payroll account with Banorte.
2. Kept an average daily balance of at least 50 MXN over the 2 months previous to the intervention
3. Valid cell phone number to receive SMS

Experimental pool

- Random sample from the universe of Banorte customers satisfying the following characteristics:

1. Had a valid payroll account with Banorte.
2. Kept an average daily balance of at least 50 MXN over the 2 months previous to the intervention
3. Valid cell phone number to receive SMS

- Experimental pool selected with minimal constraints: can study heterogeneous treatment effects overcoming implicit selection of experimenting only with those for whom the treatment is expected to work (Athey et al., 2021)

Treatment messages

- Messages about savings more generally
- "Congratulations. Your average balance over the last 12 months has been great! Continue to increase your balance and strengthen your savings."
- "Join customers your age who already save 10% or more of their income. Commit and increase the balance in your Banorte Account by $\$ \times X X$ this month."
- "Increase your balance this month by $\$ \times X X$ and reach your dreams. Commit to it. You can do it by saving only 10% of your income."
- \$XXX is a personalized amount: 10% of monthly income

Treatment messages

- Messages focused on short-term savings
- "The holidays are coming. Commit to saving \$XXX In your Banorte Account and see your wealth grow!"
- "Increase the balance in your Banorte Account and get ready today for year-end expenses!"
- "Be prepared for an emergency! Commit to leaving 10% more in your account. Don't withdraw all your money on payday."
- Message alluding to money box and "locking away the money"
- "In Banorte you have the safest money box! Increase your account balance by $\$ \times X X$ this payday and reach your goals."

Aggregate treatment effects

$$
Y_{i}=\alpha_{s}+\beta * \text { treatment }_{i}+\varepsilon_{i}
$$

Table: Aggregate Effect of the Intervention

	All Individuals Log of Checking Acct. Balance +1	Individuals with a Credit Card Log of Checking Acct. Balance +1	Log of Credit Card Interest +1
Any treatment	0.006^{*}	$0.014^{* *}$	-0.005
(0.004)	(0.007)	(0.004)	
Observations Mean of Dep. Var in Control Group	3054503	362223	362223

Method: heterogeneous treatment effects identified by causal forest

- Causal forest with 2,000 trees: "honest estimation" (Athey et al., 2019).
First with all 161 covariates, and then on the 52 most relevant Athey and Wager (2019).

Method: heterogeneous treatment effects

 identified by causal forest- Causal forest with 2,000 trees: "honest estimation" (Athey et al., 2019).

First with all 161 covariates, and then on the 52 most relevant Athey and Wager (2019).

- Calibration test (Chernozhukov et al., 2018) confirms heterogeneity

Results: treatment effects by quantiles of

 predicted treatment effects- Ranking into quartiles based on cross-fitted predictions over 2 folds.

Figure: Treatment effect on checking account balances, as a function of predicted treatment effects.

Results: saving and borrowing in the top quartile of predicted treatment effects

Table: Treatment Effects on Savings and Credit Card Borrowing

Dep.Var	(1)	(2)	(3)	(4)	(5)	(6)
	Ln Checking Account Balance +1	Ln Credit Card Balance (Banorte) +1	Ln Credit Card Balance (Credit Bureau) +1	Ln Credit Card Interest +1	Paid Interest $\{0,1\}$	Ln Credit Card Payments +1
Panel A: All Clients with Credit Cards						
TE	$\begin{gathered} 0.0614^{* * *} \\ (0.0137) \end{gathered}$	$\begin{gathered} -0.0141 \\ (0.0107) \end{gathered}$	$\begin{aligned} & -0.0066 \\ & (0.0060) \end{aligned}$	$\begin{aligned} & -0.0145 \\ & (0.0353) \end{aligned}$	$\begin{gathered} -0.0044 \\ (0.0067) \end{gathered}$	$\begin{gathered} -0.0221 \\ (0.0176) \end{gathered}$
Mean of Dep. Var in Control Group (MXN) $N=126571$	31,701.61	17,119.74	43,191.72	222.42	0.46	9,472.50
Panel B: Clients who Paid Credit Card Interest at Baseline						
TE	$\begin{aligned} & 0.0557^{* *} \\ & (0.0257) \end{aligned}$	$\begin{gathered} -0.0120 \\ (0.0095) \end{gathered}$	$\begin{gathered} -0.0085 \\ (0.0057) \end{gathered}$	$\begin{gathered} -0.0191 \\ (0.0422) \end{gathered}$	$\begin{gathered} -0.0034 \\ (0.0097) \end{gathered}$	$\begin{gathered} -0.0286 \\ (0.0213) \end{gathered}$
Mean of Dep. Var in Control Group (MXN) $N=58947$	23,244.40	22,945.46	51,401.71	410.38	0.73	7,948.76

Results: treatment effects on deposits,

 ATM withdrawals, and spending (top quartile)| | (1) | (2) | (3) |
| :--- | :---: | :---: | :---: |
| Dep.Var. | Ln Deposits | Ln ATM
 Withdrawals | Ln Spending with
 Credit or Debit
 Card |
| Panel A: Clients With Credit Card | | | |
| TE | -0.0086 | $-0.0511^{* * *}$ | $-0.0467^{* * *}$ |
| | (0.0098) | (0.0101) | (0.0107) |
| Mean of Dep. Var | 28184.53 | 12634.46 | 15615.62 |
| N=126571 | | | |
| Panel B: Clients With Credit Card Who Paid Interest At Baseline | | | |
| TE | -0.0063 | $-0.0712^{* * *}$ | $-0.0394^{* * *}$ |
| | (0.0099) | (0.0167) | (0.0107) |
| Mean of Dep. Var | 23199.13 | 14008.18 | 21063.06 |
| N=58947 | | | |

The credit card debt puzzle

- In our sample:
- The average credit card interest rate is 35.2%, and checking accounts pay 0%.
- 13.5% of individuals who pay credit card interest keep more than 50% of their income as the minimum balance in their checking accounts over the previous 6 months.
- Co-holding costs them 5\% of monthly income.

The credit card debt puzzle

- Several explanations:
 - Liquidity management:

- Transaction-convenience: Telyukova (2013)

The credit card debt puzzle

- Several explanations:
- Liquidity management:
- Transaction-convenience: Telyukova (2013)
- Uncertainty in access to credit Fulford (2015); Gorbachev and Luengo-Prado (2019)

The credit card debt puzzle

- Several explanations:
- Liquidity management:
- Transaction-convenience: Telyukova (2013)
- Uncertainty in access to credit Fulford (2015); Gorbachev and Luengo-Prado (2019)

The credit card debt puzzle

- Several explanations:
- Liquidity management:
- Transaction-convenience: Telyukova (2013)
- Uncertainty in access to credit Fulford (2015); Gorbachev and Luengo-Prado (2019)
- Mental accounting and self-control (Bertaut et al., 2009)

The credit card debt puzzle

- Several explanations:
- Liquidity management:
- Transaction-convenience: Telyukova (2013)
- Uncertainty in access to credit Fulford (2015); Gorbachev and Luengo-Prado (2019)
- Mental accounting and self-control (Bertaut et al., 2009)
- Individuals with limited self control spend up to a certain personal limit on their credit card

The credit card debt puzzle

- Several explanations:
- Liquidity management:
- Transaction-convenience: Telyukova (2013)
- Uncertainty in access to credit Fulford (2015); Gorbachev and Luengo-Prado (2019)
- Mental accounting and self-control (Bertaut et al., 2009)
- Individuals with limited self control spend up to a certain personal limit on their credit card
- If savings are used to pay-off debt: free up credit limit and with limited self-control catch up on debt effectively spending your savings

The credit card debt puzzle

- Several explanations:
- Liquidity management:
- Transaction-convenience: Telyukova (2013)
- Uncertainty in access to credit Fulford (2015); Gorbachev and Luengo-Prado (2019)
- Mental accounting and self-control (Bertaut et al., 2009)
- Individuals with limited self control spend up to a certain personal limit on their credit card
- If savings are used to pay-off debt: free up credit limit and with limited self-control catch up on debt effectively spending your savings
- Mental accounting: Liquid savings are de-facto iliquid, not available for consumption

The credit card debt puzzle: responding to

 a savings nudgeSaving nudges as a shock to patience

- Predictions of liquidity management models:

The credit card debt puzzle: responding to

 a savings nudgeSaving nudges as a shock to patience

- Predictions of liquidity management models:
- Liquidity needs already covered, open line of credit is cheaper than cash holding \rightarrow saving through debt repayment
- No increases in checking account balances
- Reductions in debt

The credit card debt puzzle: responding to

 a savings nudgeSaving nudges as a shock to patience

- Predictions of liquidity management models:
- Liquidity needs already covered, open line of credit is cheaper than cash holding \rightarrow saving through debt repayment
- No increases in checking account balances
- Reductions in debt

The credit card debt puzzle: responding to

 a savings nudge Saving nudges as a shock to patience- Predictions of liquidity management models:
- Liquidity needs already covered, open line of credit is cheaper than cash holding \rightarrow saving through debt repayment
- No increases in checking account balances
- Reductions in debt
- Predictions of mental accounting models:
- Shock to preferences of long-term self: repaying debt would lead to increases in spending
- Increases in checking account balances
- No changes in debt

The credit card debt puzzle: responding to

 a savings nudgeSaving nudges as exogenous increase in cash balances

- Predictions of liquidity management models:
- New cash holdings are available for future consumption. Consumption smoothing \rightarrow more debt
- Predictions of mental accounting models:
- New cash holdings not considered in consumption decision \rightarrow no changes in debt

The credit card debt puzzle: our findings in perspective

39% of individuals carrying credit card debt are in the top quartile of predicted treatment effects:
6\% increase in savings, no changes in debt.
Savings: \uparrow
Debt: -

	Liquidity Management		Mental Accounting	
Shock to patience	Checking -	Debt \downarrow	Checking ${ }^{\wedge}$	Debt -
Shock to cash	Checking \uparrow	Debt ${ }^{4}$	Checking ${ }^{\wedge}$	Debt -

Inconsistent with finding
Consistent with findings

The credit card debt puzzle: our findings in perspective

- The puzzle group overlaps with the top quartile of predicted treatment effects

The credit card debt puzzle: our findings in

 perspective- The puzzle group overlaps with the top quartile of predicted treatment effects

```
* Puzzle group
```

- Message based on mental accounting ("lock away your savings") carries a large effect

The credit card debt puzzle: our findings in

 perspective- The puzzle group overlaps with the top quartile of predicted treatment effects
- Puzzle group
- Message based on mental accounting ("lock away your savings") carries a large effect
- TE by message
- Savings response is uncorrelated with interest rates and with probability of carrying interest
\cdots interst rate \rightarrow consistent with separate accounts

The credit card debt puzzle: our findings in

 perspective- The puzzle group overlaps with the top quartile of predicted treatment effects
* Puzzle group
- Message based on mental accounting ("lock away your savings") carries a large effect
- TE by message
- Savings response is uncorrelated with interest rates and with probability of carrying interest Mnerme \rightarrow consistent with separate accounts
- No heterogeneity in borrowing response \rightarrow borrowing and saving not predicted by same variables

Conclusion

* To the best of our knowledge, only one study looks at saving nudges and credit outcomes (Beshears et al., 2019)
- They don't observe rolled over debt or spending data

Conclusion

* To the best of our knowledge, only one study looks at saving nudges and credit outcomes (Beshears et al., 2019)
- They don't observe rolled over debt or spending data
* Large scale experiment to jointly study saving and borrowing decisions:
- Savings out of nudges are not financed with new debt, but with reductions in consumption
- Nudges lead to net increases in savings regardless of pre-existing levels of debt
- Suggest that saving and borrowing decisions are processed in different mental accounts.

Results: treatment effects by quantiles of

 predicted treatment effects- Differences to the bottom quantiles with Romano Wolf p-values

(a) Quartiles
(b) Quintiles (top
amartile)

Results: heterogeneity in borrowing

Table: Calibration Test. Causal Forest for Borrowing Heterogeneity

Models	(1)	(2)	(3)
Mean Forest Prediction	1.3702^{*}	$1.1483^{* *}$	1.1062^{*}
	(0.9114)	(0.6123)	(0.7014)
Differential Forest Prediction	-0.2240	0.0761	-0.0495
	(0.2918)	(0.1852)	(0.1975)
$\mathrm{N}=362223$			

The first model considers all 161 available variables. The second model considers only those with variable importance greater than 1 percent, according to the first model. The third model considers variables with variable importance greater than 1 percent, according to the causal forest for savings (used throughout the paper).

Why causal forest?

- Causal forests have been successfully applied in the fields of education (Carlana et al., 2022), labor (Davis and Heller, 2020) and development economics (Ashraf et al., 2020)
- Our paper - one of the first applications in the household finance literature (Burke et al., 2020)
- In our setting, a substantially larger sample size allow us to use these methods in two novel ways
- Powered enough to study treatment effects on sub-populations of interest identified by the causal forest
- Able to compare causal forests and other methods for treatment effect heterogeneity based on experimental strata, to illustrate the risk of over-fitting bias

Why causal forest? Experimental strata may not capture heterogeneity

Table: Heterogeneous Treatment Effects by Experimental Strata

	Dep. Var: Ln (Checking Account Balances +1)								
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Any Treatment	-0.006	0.009	0.013*	0.006	0.002	0.008*	0.006	0.007*	0.005
	(0.007)	(0.007)	(0.007)	(0.005)	(0.005)	(0.005)	(0.004)	(0.004)	(0.004)
Any Treatment*Group ${ }_{1}$	Omitted								
Any Treatment*Group 2	0.012	0.001	-0.013	0.001	0.002	-0.010	0.000	-0.003	0.009
	(0.01)	(0.01)	(0.01)	(0.007)	(0.007)	(0.009)	(0.010)	(0.010)	(0.007)
Any Treatment*Group3	0.010	0.014	-0.002			-0.001			
	(0.01)	(0.01)	(0.01)			(0.009)			
Any Treatment*Group ${ }_{4}$	0.024**	0.002	-0.013						
	(0.01)	(0.01)	(0.01)						
	Quartiles of			Median of	Median of	Median of			
Group Definition	Checking Acct. Balance	Income	Age	Tenure with Banorte	ATM Withrawals	Debit Card Transactions	Is Digital?	Main Bank?	Credit Card?
Observations	3054503	3054503	3054503	3054503	3054503	3054503	3054503	3054503	3054503

Why causal forest? Sorting without thinking about overfitting leads to biased estimates

Table: Average treatment effects for users in groups with the highest observed average treatment effect and for users with the highest individual treatment effects predicted by the causal forest

	Observed Average Treatment Effects				Individual Treatment Effects predicted by Causal Forest			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Dep.Var.	N	Ln Checking Account Balance	Ln Credit Card Interest	$\begin{gathered} \text { Ln Credit Card } \\ \text { Balance (Banorte) } \\ \hline \end{gathered}$	N	Ln Checking Account Balance	Ln Credit Card Interest	$\begin{gathered} \hline \text { Ln Credit Card } \\ \text { Balance (Banorte) } \\ \hline \end{gathered}$
Panel A: All Clientes ATE	763,511	$\begin{gathered} 0.2401 * * * \\ (0.0072) \end{gathered}$	$\underset{(0.0037)}{-0.0197 * *}$	$\begin{gathered} -0.0142^{* * *} \\ (0.0048) \end{gathered}$	763,625	$\underset{(0.0072)}{0.022 * * *}$	$\begin{gathered} -0.0023 \\ (0.0048) \end{gathered}$	$\begin{gathered} -0.0019 \\ (0.0041) \end{gathered}$
Mean of dep var (MXN)		18283.47	66.66463	4161.451		21872.15		
Panel B: Clients with Credit Card ATE	126,468	$\begin{gathered} 0.4403 * * * \\ (0.0148) \end{gathered}$	$\begin{gathered} -0.0991 * * * \\ (0.0095) \end{gathered}$	$\begin{gathered} -0.1089 * * * \\ (0.0083) \end{gathered}$	126,458	$\begin{aligned} & 0.0601 * * * \\ & (0.0177) \end{aligned}$	$\begin{gathered} -0.0171 \\ (0.0334) \\ \hline \end{gathered}$	$\begin{gathered} -0.0155 \\ (0.0116) \end{gathered}$
Mean of dep var (MXN)		21623.82	241.41	15077.12		31681.46	230.39	17097.99
Panel C: Clients with Credit Card who paid interest at baseline ATE	61,204	$\begin{aligned} & 0.5167 * * * \\ & (0.0114) \end{aligned}$	$\begin{gathered} -0.1109 * * * \\ (0.0094) \end{gathered}$	$\begin{gathered} -0.1946^{* * *} \\ (0.0092) \end{gathered}$	58,485	$\begin{aligned} & 0.0567^{* *} \\ & (0.0251) \end{aligned}$	$\begin{gathered} -0.0242 \\ (0.0453) \end{gathered}$	$\begin{gathered} -0.0102 \\ (0.0082) \end{gathered}$

Results: characteristics of individuals in top and bottom quartiles

Table: Differences Between Top and Bottom Quartiles of the Distribution of Predicted Treat-ment Effects

	Bottom 25\%	Top 25\%	P-value of Difference
Age (Years)	44.18	46.35	0.0054
Monthly Income	$14,118.44$	$15,109.87$	0.0000
Tenure (Months)	74.60	88.69	0.0000
Checking Account Balance	$16,017.05$	$21,338.30$	0.0000
Credit Card Balance	$2,435.53$	$6,038.65$	0.0000
Credit Card Limit	$10,812.16$	$29,933.66$	0.0000

Results: saving and borrowing for individual with low credit line utilization

Table: Treatment Effects on Savings and Credit Card Borrowing for Individuals Below the Median Credit Line Utilization

Dep. Var	(1)	(2)	(3)	(4)	(5)	(6)
	Ln Checking Account Balance +1	Ln Credit Card Balance (Banorte) +1	Ln Credit Card Balance (Credit Bureau) +1	Ln Credit Card Interest +1	Paid Interest $\{0,1\}$	Ln Credit Card Payments +1
Panel A: Clients with Credit Line Utilization Lower Than the Median						
TE	$\begin{gathered} 0.0595^{* * *} \\ (0.0230) \end{gathered}$	$\begin{gathered} 0.0030 \\ (0.0173) \end{gathered}$	$\begin{gathered} -0.0041 \\ (0.0072) \end{gathered}$	$\begin{gathered} 0.0035 \\ (0.0495) \end{gathered}$	$\begin{gathered} 0.0056 \\ (0.0089) \end{gathered}$	$\begin{gathered} 0.0071 \\ (0.0193) \end{gathered}$
Mean of Dep. Var in Control Group (MXN) $N=63286$	43,152.85	8,701.33	19,045.70	98.62	0.23	6,013.95

- Back

Results: Treatment effects by message

Table: Treatment Effects on Saving and Credit Card Borrowing: Individuals in the Top Quartile of Predicted Treatment Effects who Have a Credit Card »Back

	(1)	(2)	(3)	(4)	(5)	(6)
	Ln Checking Account Balance +1	Increase in Savings (MXN)	Ln Credit Card Interest +1	Upper Confidence Interval of Credit Card Interest (MXN)	Upper Confidence Interval for Interest Charges Divided by Increase in Savings	N
All messages	$\begin{gathered} 0.0601^{* * *} \\ (0.0177) \end{gathered}$	1904.37	$\begin{gathered} -0.0171 \\ (0.0336) \end{gathered}$	11.12	0.006	126458
Msg 1 Congratulations	$\begin{gathered} 0.0265 \\ (0.0228) \end{gathered}$	839.56	$\begin{gathered} -0.0055 \\ (0.0336) \end{gathered}$	13.90	0.017	38802
Msg 2 Year end expenses	$\begin{gathered} 0.1170^{* * *} \\ (0.0228) \end{gathered}$	3705.46	$\begin{gathered} -0.0183 \\ (0.0336) \end{gathered}$	10.96	0.003	38775
Msg 3 Join others your age	$\begin{aligned} & 0.0413^{*} \\ & (0.0228) \end{aligned}$	1306.86	$\begin{gathered} -0.0142 \\ (0.0336) \end{gathered}$	11.90	0.009	38822
Msg 4 Money box	$\begin{gathered} 0.0979 * * * \\ (0.0229) \end{gathered}$	3102.57	$\begin{gathered} -0.0256 \\ (0.0339) \end{gathered}$	9.41	0.003	38700
Msg 5 Reach your dreams	$\begin{gathered} 0.0623^{* * *} \\ (0.0237) \end{gathered}$	1974.71	$\begin{gathered} -0.0348 \\ (0.0350) \end{gathered}$	7.79	0.004	38803
Msg 6 Money shortfalls	$\begin{gathered} 0.0338 \\ (0.0253) \end{gathered}$	1069.25	$\begin{gathered} -0.0291 \\ (0.0374) \end{gathered}$	10.20	0.010	38752
Msg 7 Prepared for emergency	$\begin{gathered} 0.042 \\ (0.0298) \\ \hline \end{gathered}$	1330.94	$\begin{gathered} 0.008 \\ (0.0440) \\ \hline \end{gathered}$	21.72	0.016	38590

Results: treatment effects on savings and probability of rolling-over credit card debt

Figure: Correlation between the Fraction of Individuals Paying Credit Card Interest and the Treatment Effect of the Intervention on Checking Account Balances. Based on observations in the top 25% of predicted treatment effects, which are further split into deciles.

Results: treatment effects on savings and credit card interest rates

Figure: Correlation between Credit Card Interest Rates and the Treatment Effect of the Intervention on Checking Account Balances. Based on observations in the top 25% of predicted treatment effects, which are further split into deciles of predicted treatment effects.

Results: treatment effects on borrowing and prediction errors

Figure: Correlation between between Prediction Errors and Treatment Effects on Borrowing. Based on observations in the top 25% of predicted treatment effects, which are further split into deciles

Distribution of the Puzzle Group by Quartiles of Predicted Treatment

Figure: Distribution of the Puzzle Group by Quartiles of Predicted Treatment Effects

Results: treatment effects on savings

week-by-week

Figure: Treatment Effect on Savings by Week, for Individuals with Credit Card who are in the Top Quartile of the Distribution of Predicted Treatment Effects

Ashraf, N., N. Bau, C. Low, and K. McGinn (2020).
Negotiating a better future: How interpersonal skills facilitate intergenerational investment. The Quarterly Journal of Economics 135(2), 1095-1151.
Athey, S., V. Hadad, N. Keleher, O. Medina, R. Nissan, R. Rosemberg, M. Schaelling, J. Spiess, and J. Wright (2021). Computational applications to behavioral science. Technical report.
Athey, S., J. Tibshirani, S. Wager, et al. (2019). Generalized random forests. The Annals of Statistics 47(2), 1148-1178.
Athey, S. and S. Wager (2019). Estimating treatment effects with causal forests: An application. arXiv preprint arXiv:1902.07409.

Benartzi, S., J. Beshears, K. L. Milkman, C. R.
Sunstein, R. H. Thaler, M. Shankar, W. Tucker-Ray, W. J. Congdon, and S. Galing (2017). Should governments invest more in nudging? Psychological science 28(8), 1041-1055.
Bertaut, C., M. Haliassos, and M. Reiter (2009). Credit Card Debt Puzzles and Debt Revolvers for Self Control. Review of Finance 13(4), 657-692. Beshears, J., J. J. Choi, D. Laibson, B. C. Madrian, and W. L. Skimmyhorn (2019). Borrowing to save? the impact of automatic enrollment on debt. Technical report, National Bureau of Economic Research.

Beshears, J. and H. Kosowsky (2020). Nudging: Progress to date and future directions.

Organizational Behavior and Human Decision Processes 161, 3-19.
Burke, J., J. Jamison, D. Karlan, K. Mihaly, and J. Zinman (2020). Credit building or credit crumbling? a credit builder loanâs effects on consumer behavior, credit scores and their predictive power. Technical report, National Bureau of Economic Research.
Carlana, M., E. La Ferrara, and P. Pinotti (2022). Goals and gaps: Educational careers of immigrant children. Econometrica 90(1), 1-29.
Chernozhukov, V., M. Demirer, E. Duflo, and I. Fernandez-Val (2018). Generic machine learning inference on heterogenous treatment effects in randomized experiments. Technical report, National Bureau of Economic Research.

Chetty, R., J. N. Friedman, S. Leth-Petersen, T. H. Nielsen, and T. Olsen (2014). Active vs. passive decisions and crowd-out in retirement savings accounts: Evidence from denmark. The Quarterly Journal of Economics 129(3), 1141-1219.
Davis, J. M. and S. B. Heller (2020). Rethinking the benefits of youth employment programs: The heterogeneous effects of summer jobs. Review of Economics and Statistics 102(4), 664-677.
Fulford, S. L. (2015). How important is variability in consumer credit limits? Journal of Monetary Economics 72, 42-63.
Gorbachev, O. and M. J. Luengo-Prado (2019). The credit card debt puzzle: The role of preferences, credit access risk, and financial literacy. Review of Economics and Statistics 101(2), 294-309.

Haliassos, M. and M. Reiter (2005). Credit card debt puzzles. Technical report, CFS Working Paper.
Sussman, A. B. and R. L. O'brien (2016). Knowing when to spend: Unintended financial consequences of earmarking to encourage savings. Journal of Marketing Research 53(5), 790-803.
Telyukova, I. A. (2013). Household need for liquidity and the credit card debt puzzle. Review of Economic Studies 80(3), 1148-1177.
Thaler, R. H. (1994). Psychology and savings policies. The American Economic Review 84(2), 186-192.

