Fertility, Financial Literacy, and Household Portfolios: Speed of Adjustment

Sebastian Gomez-Cardona

UBC

Motivation

Financial literacy is an important factor in household portfolios:

- Accumulation of wealth throughout the life-cycle (e.g. Lusardi and Mitchell, 2007; Lusardi, Michaud, and Mitchell, 2017)
- Access to various financial assets, e.g. stocks (Gaudecker, 2015)
- Increasing returns assets (Fagereng et al., 2020)
- Facing shocks (Lusardi, Hasler, and Yakoboski, 2021)

Motivation

Financial literacy is an important factor in household portfolios:

- Accumulation of wealth throughout the life-cycle (e.g. Lusardi and Mitchell, 2007; Lusardi, Michaud, and Mitchell, 2017)
- Access to various financial assets, e.g. stocks (Gaudecker, 2015)
- Increasing returns assets (Fagereng et al., 2020)
- Facing shocks (Lusardi, Hasler, and Yakoboski, 2021)

Speed of adjustment:

- Little is known about its relationship to financial literacy (Bianchi, 2018)
- Relevant role when facing shocks

Motivation

Financial literacy is an important factor in household portfolios:

- Accumulation of wealth throughout the life-cycle (e.g. Lusardi and Mitchell, 2007; Lusardi, Michaud, and Mitchell, 2017)
- Access to various financial assets, e.g. stocks (Gaudecker, 2015)
- Increasing returns assets (Fagereng et al., 2020)
- Facing shocks (Lusardi, Hasler, and Yakoboski, 2021)

Speed of adjustment:

- Little is known about its relationship to financial literacy (Bianchi, 2018)
- Relevant role when facing shocks

Questions:

- Is there any relationship between financial literacy and speed of adjustment in household portfolios?
- If so, can financial literacy dampen the negative effect of shocks?

• I document adjustment towards housing around the birth of children

- I document adjustment towards housing around the birth of children
 - Housing is an important part of wealth for many households
 - Presence of adjustment costs can make financial literacy more relevant

- I document adjustment towards housing around the birth of children
 - Housing is an important part of wealth for many households
 - Presence of adjustment costs can make financial literacy more relevant
- I document differences in the adjustment for different wealth levels

- I document adjustment towards housing around the birth of children
 - Housing is an important part of wealth for many households
 - Presence of adjustment costs can make financial literacy more relevant
- I document differences in the adjustment for different wealth levels
 - Relative importance of financial literacy

- I document adjustment towards housing around the birth of children
 - Housing is an important part of wealth for many households
 - Presence of adjustment costs can make financial literacy more relevant
- I document differences in the adjustment for different wealth levels
 - Relative importance of financial literacy
- Differentiate between planned and "unplanned" births
 - Use "unplanned" births as a shock
 - Evaluate protection of financial literacy from those shocks
 - Roe v Wade

Contribution

- Role of financial literacy in speed of portfolio adjustment
- Protection of financial literacy to shocks (fertility)
- Fertility and portfolios including non-financial assets (Love, 2009; Bogan, 2013)
- Effect of fertility shocks in household portfolios

Data and estimation

Data sources:

- PSID
 - Follow households before and after birth (panel 1998 2018)
 - Leverage fertility shocks to distinguish planned vs unplanned births
- SCF
 - Age of children
 - Questions on financial literacy

Household portfolios

 Assets: Liquid financial assets, stocks, housing, other real estates, private business, and retirement accounts

Estimation

- Tobit (share) and logit (own)
- Path before and after birth

Stylized Facts

- Family size effect: Children increase the weight of housing (\uparrow 8.6%) and decrease liquid financial (\downarrow 3.5%)
- Expected events and planning horizons: On average, households start adjustment four years before birth
- Household heterogeneity: Financial literacy changes the speed of adjustment toward housing
 - Poor: delay
 - Medium-wealth: accelerate
 - Rich: no effect
- Fertility shocks: "unplanned" births decrease share of housing

Model

- Life-cycle model
- Durable (h) and non-durable (c) consumption
- Fertility: increases MU of consumption goods
- Adjustment costs in durable good $(\phi(h_{t-1}, h_t))$
- Financial asset (b)
- Financial literacy and fertility exogenous
- Financial literacy:
 - Benchmark: b is risk-free. Higher return (Lusardi, Michaud, and Mitchell, 2017; Fagereng et al., 2020; Bianchi, 2018)
 - Robustness: return b stochastic. Less volatility

Counterfactuals

- Mechanism: Ability to pay for portfolio adjustment costs depends on financial literacy → different portfolio outcomes
- Financial literacy and welfare: Financial literacy increases welfare more for households with children (2x)
- Fertility shocks:
 - More likely in poor households (Roe v Wade)
 - Increase need for liquidity
 - Different allocation to planned births
 - Financial literacy can compensate welfare losses by 10% 35%

Conclusions

- Fertility comes with an adjustment towards illiquid assets (housing)
- Speed of adjustment depends on financial literacy
- Interaction of financial literacy and borrowing constraints
- Financial literacy plays a larger role in welfare for households with children
- Financial literacy can diminish negative effect of "unplanned" births

Regressions

Random effects Tobit

$$y_{i,t}^{k} = \begin{cases} 0 & y_{i,t}^{*k} \le 0\\ y_{i,t}^{*k} & 0 \le y_{i,t}^{*k} \le 1\\ 1 & y_{i,t}^{*k} \ge 1 \end{cases}$$
 (1)

$$y_{i,t}^{*k} = \beta^{k} X_{i,t} + \sum_{j=-N_0}^{N_1} \gamma_{j}^{k} \mathbb{1}\{birth_{t+j}\} + \epsilon_{i,t}^{k}$$
 (2)

- $y_{i,t}^k$: share of total assets invested in asset k
- $X_{i,t}$: age, years of education, gender, marital status, state, number of adults in household, income group, wealth group, year fixed effects

Stylized facts - I: adjustment

- Fertility: share of housing $\uparrow 8.5\%$, deposits $\downarrow 3.5\%$
- Anticipation in the adjustment (all wealth levels)

Figure: Share of housing. Control group: no children

Stylized facts - II: speed of adjustment

Financial literacy affects speed of adjustment

(a) Tercile 3

Stylized facts - II: speed of adjustment

Financial literacy affects speed of adjustment

Figure: Share of housing. Double difference by fertility and financial literacy

Stylized facts - II: speed of adjustment

Financial literacy affects speed of adjustment

Figure: Share of housing. Tercile 1 wealth. Double difference fertility and finlit

Fertility - Wealth

Figure: Share in portfolio. Control group: no children

Fertility - Path deposits

Figure: Share of deposits. Control group: no children

Fertility - Paths by wealth

Figure: Share in portfolio. Control group: no children

Model overview

- Life-cycle model. 1 period = two years
- Exogenous income
- Durable (h) and non-durable (c^a, c^d) consumption: MUC increases with children
- Adjustment costs in durable good $(\phi(h_{t-1}, h_t))$
- Financial asset (b)
- Financial literacy:
 - Benchmark: b is risk-free. Fin. lit. higher return (Lusardi, Michaud, and Mitchell, 2017;
 Fagereng et al., 2020)
 - Robustness: return b stochastic. Fin. lit. less volatility
- Exogenous fertility. Known from moment 0 ($d = \{0, 0.25\}$)
- Financial literacy and fertility drawn from copula

Household problem

$$\begin{split} &V_t(b_t,h_{t-1},d_t,y_t) = \\ &\max_{c_t^a,c_t^d,b_{t+1},h_t} \left\{ \frac{\left(\alpha_1(c_t^a)^\rho + \psi d_t(c_t^d)^\rho + \left(\alpha_2 + g(d_t,A_d)\right)(h_t)^\rho\right)^{(1-\sigma)/\rho}}{1-\sigma} \right. \\ &+ \beta \mathbb{E}_t[V_{t+1}(b_{t+1},h_t,d_{t+1},y_{t+1})] \right\} \\ &\text{s.t.} \\ &b_{t+1} + h_t + c_t^a + d_t c_t^d + \phi(h_{t-1},h_t) = R_b^i b_t + R_h h_{t-1} + y_t \\ &b_{t+1} \geq 0 \\ &h_t \geq 0 \end{split}$$

→ Total household consumption

Household problem - Functional forms

$$\phi(h_t, h_{t-1}) = \begin{cases} 0 & h_t = h_{t-1} \\ \max(\phi_1 h_t + \phi_2 (h_t - h_{t-1})^2, \phi_0) & h_t \neq h_{t-1} \end{cases}$$
(3)

$$g(d,A) = \begin{cases} 0 & d = 0\\ \eta_{0-4}^{d} - 1 & d > 0, A \le 4\\ \eta_{5-9}^{d} - 1 & d > 0, 5 \le A \le 9\\ \eta_{10-14}^{d} - 1 & d > 0, 10 \le A \le 14\\ \eta_{15-17}^{d} - 1 & d > 0, 15 \le A \le 17 \end{cases}$$

$$(4)$$

$$ln(y_t) = y_t^f + z_t + \epsilon_t$$

$$z_t = \rho_V z_{t-1} + \nu_t$$
(5)

$$z_t = \rho_y z_{t-1} + \nu_t \tag{6}$$

Parameter values

Table: Moments are excess of share in housing children vs no children

Parameter	Value	Moment	Model	Data
η_{0-4}	4.97	Child at home tercile 1	0.105	0.125
η_{5-9}	3.88	Child at home tercile 2	0.093	0.083
$\eta_{ exttt{10-14}}$	4.78	Child at home tercile 3	0.123	0.072
η_{15-17}	4.07	R	1.069	1.05
ϕ_{0}	0.50	Low wealth, H v L fin. lit. 0-4	-0.032	-0.035
ϕ_2	0.13	Low wealth, H v L fin. lit. 5-9	-0.060	-0.082
$R_{\text{lowfinlit}}$	1.064	Low wealth, H v L fin. lit. 10-14	0.025	0.063
$R_{highfinlit}$	1.078	Low wealth, H v L fin. lit. 15-17	0.010	0.070

→ Other parameters

→ Plots → Stochastic R

Non-targeted moments

(d) High vs Low fin. lit. Wealth 2

Household problem - Total household consumption

$$\begin{split} V_t(b_t,h_{t-1},y_t,d_t) &= \max_{c_t,b_{t+1},h_t} \\ & \left\{ \frac{\left(\alpha_1(1+d_t(\psi/\alpha_1)^{1/(1-\rho)})^{1-\rho}c_t^{\rho} + \left(\alpha_2 + g(d_t)\right)(h_t)^{\rho}\right)^{(1-\sigma)/\rho}}{1-\sigma} \\ &+ \beta \mathbb{E}_t[V_{t+1}(b_{t+1},h_t,y_{t+1},d_{t+1})] \right\} \\ \text{s.t.} \\ &b_{t+1} + h_t + c_t + \phi(h_{t-1},h_t) = R_b b_t + R_h h_{t-1} + y_t \\ &b_{t+1} \geq 0 \\ &h_t \geq 0 \end{split}$$

Other parameter values

Table: Parameter values ▶ Back

Parameter	Value	Source
ρ	0	Fernández-Villaverde and Krueger (2011)
α_1	0.85	Kaplan and Violante (2014)
α_2	0.15	Kaplan and Violante (2014)
σ^{-}	2.0	Fernández-Villaverde and Krueger (2011)
ψ	0.92	Attanasio et al. (2016)
y_t^f		Hansen (1993)
ρ_{y}	0.935	Fernández-Villaverde and Krueger (2011)
σ_{ν}	0.247	Fernández-Villaverde and Krueger (2011)
σ_{ϵ}	0.130	Fernández-Villaverde and Krueger (2011)
κ	0.031	Cooper and Zhu (2016)
ϕ_{beq}	1.834	Cooper and Zhu (2016)
β	0.88	Kaplan and Violante (2014)
R_h	1.03	Shiller (2011) and average 2000-2020
ϕ_1	0.06	Bajari et al. (2013)

Targeted moments

Figure: Share of housing. Control group: no children

"Unplanned" births: incidence by wealth tercile

"Unplanned" births: effect on portfolio

Figure: Share of housing. Control group: "planned" births

"Unplanned" births: effect on portfolio

Figure: Share of housing. Control group: "planned" births

"Unplanned" births

Definition

- Benchmark: mother → Birth "unwanted"
- Robustness: contraceptive at time of pregnancy

Importance

- "Unexpected shock" to households
- More likely in poor households (Su and Addo, 2018)
- Roe v Wade

Liquidity needs different from "planned" births: ↓ **housing**

Use the model to analyze differences between low and high financial literacy

➤ Effect on portfolio → Effect on portfolio. Comparison → Model: effect on portfolio by fin. lit

Welfare comparison

Compare households

- Same number of children
- Same income shocks
- Different financial literacy
- Different "planning" of birth

$$\mathbb{E} \sum_{t=0}^{T} \beta^{t} u(c_{t}^{1}, h_{t}^{1}, d_{t}) = \mathbb{E} \sum_{t=0}^{T} \beta^{t} u(m \times c_{t}^{2}, h_{t}^{2}, d_{t})$$
 (7)

Welfare comparison - Financial literacy

Table: Comparison in non-durable consumption units

Group	Median	Mean
No child. High vs Low finlit	0.15%	0.13%
Planned child. High vs Low finlit	0.31%	1.08%
Unplanned. High vs Low finlit	0.34%	1.20%

200 simulations. Initial persistent component of income set at lowest value.

Welfare comparison - Planned births

Table: Comparison in non-durable consumption units

Group	Median	Mean
Low finlit. Planned vs "Unplanned" children	0.19%	0.27%
High finlit. Planned vs "Unplanned" children	0.12%	0.25%

200 simulations. Initial persistent component of income set at lowest value.

"Unplanned" births: effect on portfolio

Figure: Share of housing. Control group: "planned" births

Parameter values

Table: Moments are excess of share in housing children vs no children

Parameter	Value	Moment	Model	Data
η_{0-4}	3.67	Child at home tercile 1	0.099	0.125
η_{5-9}	3.71	Child at home tercile 2	0.081	0.083
η_{10-14}	3.93	Child at home tercile 3	0.089	0.072
η_{15-17}	2.90	σ_R	0.253	0.16
ϕ_{0}	0.56	Low wealth, H v L fin. lit. 0-4	-0.036	-0.035
ϕ_2	0.13	Low wealth, H v L fin. lit. 5-9	-0.082	-0.082
$\sigma_{R, \text{lowfinlit}}$	0.224	Low wealth, H v L fin. lit. 10-14	0.068	0.063
$\sigma_{R,highfinlit}$	0.056	Low wealth, H v L fin. lit. 15-17	0.010	0.070

Targeted moments - Robustness

Figure: Share of housing. Control group: no children

Non-targeted moments - Robustness

Figure: Share of housing around time of birth

Welfare comparison - Robustness

Table: Comparison in non-durable consumption units

Group	Median	Mean
No child. High vs Low finlit	3.89%	4.04%
Planned child. High vs Low finlit	4.54%	4.74%
Unplanned. High vs Low finlit	4.20%	4.35%
Low finlit. Planned vs "Unplanned" children	0.22%	0.38%
High finlit. Planned vs "Unplanned" children	0.45%	0.75%

200 simulations. Initial persistent component of income set at lowest value.

