The Long-Run Dynamics of Gender Gaps

Fed/GFLEC Financial Literacy Seminar

March 10, 2022

Claudia Olivetti

Dartmouth College and NBER

Trends in Labor Force Participation by Gender and Marital Status: 1962-2020

Author's calculation using Current Populations Survey (ASEC). Sample: Civilian population, aged 25-54.

Trends in Labor Force Participation: 1962-2020

Author's calculation using Current Populations Survey (ASEC). Sample: Civilian population, aged 25-54.

LFP of married women by age of the youngest child: 1968-2020

Author's calculation using Current Populations Survey (ASEC). Sample: Civilian population, aged 25-54.

The evolution of the gender earnings ratios: 1962-2020

Author's calculation using Current Populations Survey (ASEC). Sample: Civilian population, aged 25-54. Full-time workers.

Goldin, Kerr, Olivetti (2021)

Family Lifecycle and Women's Careers

- Why does pay gap increase from early career to age 45?
 - "Motherhood penalty" vs. "male marriage bonus"
 - Event studies around first birth
- What happens to career gaps as children age and leave home?
 - Need longitudinal data that follows men and women as they and their children age.

The Other Side of the Mountain: Women's Employment and Earnings over the Family Cycle

Claudia Goldin, Sari P. Kerr and Claudia Olivetti

The Other Side of the Mountain

Evidence from the NLSY79

- Cohort born from 1957 to 1964.
- Interviewed for first time in 1979, aged 15-22. Followed until 2018, with some attrition and sample changes.
- To have as complete a work history as possible, we use individuals whose last response was 2018.
- Within that group, our sample contains all individuals who earned a four-year college degree by age 35.
 - 650 women and 634 men
 - 73% mothers
 - 75% fathers
 - Median age at first birth: 29 (Women) and 31 (Men)

Main Specification

$$y_{it} = \phi_0 + \phi_1 F_i + \phi_2 A'_{it} + \phi_3 (A'_{it} \cdot F_i) + \alpha_1(\mathbb{K}'_{it}) + \alpha_2(\mathbb{K}'_{it} \cdot F_i) + \delta \cdot \mathbb{Z}'_{it} + \gamma \cdot \mathbb{X}'_{it} + \psi U_t + \varepsilon_{it}$$

- F_i = female dummy;
- A'_{it} = vector of five-year age groupings;
- \mathbb{K}'_{it} = total number of (biological) children born up to that year, child age bin of the youngest child: 0<3; 3<6; 6<12; 12<18; and 18 plus. Child variables are interacted with female dummy ($\mathbb{K}'_{it} \cdot F_i$).
- \mathbb{Z}'_{it} = hours and weeks (in logs).
- X'_{it} = fraction of past five years individual worked low hours or not at all, and whether the individual earned an advanced degree.
- U_t = national unemployment rate in year t
- Fixed Effect regressions: $\varepsilon_{it} = v_i + u_{it} \pmod{F_i}$

Results: Simulation Graphs

• Use women's mean number of kids & age distribution of youngest by age of mother.

Mother's	Number of children	Fraction with children by age of youngest, among all mothers					
age		0–2 years	3–5 years	6–11 years	12–17 years	18+ years	
25–29	1.356	0.779	0.152	0.065	0.004	0.000	
30–34	1.684	0.591	0.275	0.114	0.019	0.001	
35–39	1.939	0.288	0.305	0.347	0.052	0.008	
40–44	2.042	0.075	0.152	0.489	0.243	0.038	
45–49	2.077	0.007	0.031	0.276	0.483	0.203	
50–54	2.087	0.000	0.003	0.057	0.347	0.593	
55–59	2.100	0.000	0.000	0.006	0.115	0.879	

Impact of Children on Hours of Paid Work for Mothers Relative to Non-Mothers

OLS Mother vs Non-mother
FE Mother vs Non-mother

Impact of of Children (and Female) on Hours of Paid Work for Mothers Relative to Fathers

Impact of Children on Earnings of Mothers Relative to Non-Mothers: Individual Fixed Effects Estimation

■ No Time Vars ■ With Time Vars ■ With Time, Exp, Degrees

Impact of Children on Earnings of Mothers Relative to Fathers: Individual Fixed-Effects Estimation

■ No Time Vars ■ With Time Vars ■ With Time, Exp, Degrees

Parental Gender Gap in Earnings, Motherhood Penalty, Price of Being Female, and Fatherhood Premium

Age group	(1) Parental gender gap in earnings	(2) Motherhood penalty	(3) Price of being female	(4) Fatherhood premium
25–29	-0.382	-0.081	-0.186	0.115
30–34	-0.462	-0.116	-0.197	0.150
35–39	-0.538	-0.144	-0.213	0.181
40–44	-0.541	-0.146	-0.199	0.196
45–49	-0.561	-0.124	-0.228	0.209
50–54	-0.568	-0.090	-0.258	0.221
55–59	-0.586	-0.074	-0.281	0.231

Motherhood Penalty and *Job Flexibility* Prior to Birth of First Child

Low Flexibility

High Flexibility

Fatherhood Premium and *Job Flexibility* Prior to Birth of First Child

Low Flexibility

High Flexibility

Impact of Children on Earnings of Mothers Relative to Fathers: *Low-Flex Husbands*

Husband and wife in Low-Flex Jobs

Husband Low-Flex, Wife High-Flex

Impact of Children on Earnings of Mothers Relative to Fathers: *High-flex husband*

■ No Time Vars ■ With Time Vars ■ With Time, Exp, Degrees 0 -0.2 -0.4 -0.6 -0.8 -1 -1.2 25-29 30-34 35-39 40 - 4445-49 50-54 55-59

Both Spouses in High-Flex Jobs

Husband High-Flex, Wife Low-Flex

■ No Time Vars ■ With Time Vars ■ With Time, Exp, Degrees

Summarizing ...

• The "career cost of family" is high. As women increased their credentials, the costs of family increased.

• For the early part of the lifecycle, that is a well explored fact. But what are the long-run implications?

• Our evidence suggests some recovery as the children get older. Motherhood Penalty shrinks, but Fatherhood Premium is persistent.

• Future work: Combination of LEHD and Decennial Census / ACS to understand role of job changes, type of firm employed in, and geographic family mobility.

Thanks!

