Fear and Risk: Do Visceral Factors Affect Risk Taking?

Vicki L. Bogan and Scott E. Yonker

FED/GFLEC Seminar - November 4, 2021

Outline

- Motivation/Related Literature
- Primary Research Questions
- Preview of Findings
- Identification Strategy
- Data
- Empirical Analysis
- Concluding Remarks

Motivation

- Rational agent models struggle to explain a number of empirical regularities found in asset markets
 - High volatility in asset prices (Shiller, 1981; Grossman & Shiller, 1981)
 - Large equity premium (Mehra & Prescott, 1985)
 - Countercyclical nature of expected risk premiums (Fama & French, 1989)
- Systematic time varying risk preferences may be the key
- Theoretical models that feature countercyclical risk taking can explain these patterns
 - Campbell and Cochrane (1999)
 - Barberis, Huang, and Santos (2001)
 - Ju and Miao (2012)

- Recent empirical work documents evidence consistent with countercyclical financial risk taking
 - Guiso, Sapienza, and Zingales (2018)
 - Dohmen, Lehmann, and Pignatti (2016)
 - Gerrans, Faff, and Hartnett (2015)
 - Necker and Ziegelmeyer (2016)
- Channel causing investors to reduce risk is difficult to identify

- One promising channel put forth is negative emotions or "visceral factors"
- Utility can be modeled as state dependent on negative emotions or visceral factors (Loewenstein, 2000)
- Guiso, Sapienza, and Zingales (2018) and Necker and Ziegelmeyer (2016) conjecture that negative emotions were important to decreased risk taking following the 2007-08 financial crisis - beyond any wealth effects

Are negative emotions/visceral factors important for countercyclical risk taking?

- Cohn et al. (2015)
 - In an experimental setting, prime professional investors with market booms or busts
 - Have them play real stakes risk taking games
 - Show those primed with busts take less risk
 - Report greater fear among those primed with busts
- Cohn et al. (2015) also show that subjects threatened with electric shocks take less risk
- Guiso et al. (2018) demonstrate that subjects shown horror film clips report higher risk aversion

- Negative emotions have been shown to be influential in risk taking
 - Other direct experimental evidence (Kuhnen & Knutson, 2011; Kuhnen & Knutson, 2005)
 - Indirect evidence in asset markets (Edmans et al., 2007; Hirshleifer & Shumway, 2003; Kamstra et al., 2003; Kamstra et al., 2000; Saunders, 1993)

- Survey-based studies have found negative exogenous shocks lead to more conservative investor risk attitudes
 - Natural disasters (Cameron & Shah, 2015, Bernile et al., 2018)
 - War (Callen, Isaqzadeh, Long, & Sprenger, 2014)
 - Violence (Moya, 2018; Brown et al., 2019)
- Many of these survey-based studies are in developing economies and use lottery type games to measure risk aversion
- Critiques argue these measures are not well-suited for developed economies and question the external validity (Chuang & Schechter, 2015; Vieider, 2018)

Primary Research Questions

Since visceral factors are fleeting, they are a potential source of volatility in risk-taking behavior

- Does fear affect financial risk taking of actual investors in actual markets?
- What are the dynamics of these effects?

Challenges

- Identify a relatively homogeneous group of investors on which to conduct analysis
- Identify a randomly assigned treatment that generates fear but is uncorrelated with personal, local, or macroeconomic factors that could affect risk taking decisions

Our Identification Strategy

We analyze the effect of mass shootings on the risk-taking decisions of U.S. domestic equity mutual fund managers

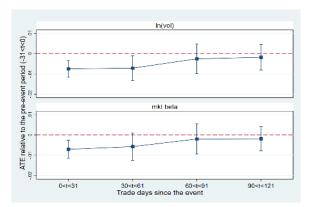
We document robust evidence that is consistent with fear inducing temporary reductions in financial risk taking

• Relative to non-exposed peers, professional fund managers exposed to a mass shooting event reduce risk following the mass shooting

- Relative to non-exposed peers, professional fund managers exposed to a mass shooting event reduce risk following the mass shooting
- Reduction of risk is through reductions in systematic risk

- Relative to non-exposed peers, professional fund managers exposed to a mass shooting event reduce risk following the mass shooting
- Reduction of risk is through reductions in systematic risk
- The magnitude of the effect is stronger for mass shooting events with greater fatalities, for funds located closer to the shootings, and for funds run by managers more susceptible to fear of mass shootings

- Relative to non-exposed peers, professional fund managers exposed to a mass shooting event reduce risk following the mass shooting
- Reduction of risk is through reductions in systematic risk
- The magnitude of the effect is stronger for mass shooting events with greater fatalities, for funds located closer to the shootings, and for funds run by managers more susceptible to fear of mass shootings
- Results are robust to alternative:


- Relative to non-exposed peers, professional fund managers exposed to a mass shooting event reduce risk following the mass shooting
- Reduction of risk is through reductions in systematic risk
- The magnitude of the effect is stronger for mass shooting events with greater fatalities, for funds located closer to the shootings, and for funds run by managers more susceptible to fear of mass shootings
- Results are robust to alternative:
 - risk measures

- Relative to non-exposed peers, professional fund managers exposed to a mass shooting event reduce risk following the mass shooting
- Reduction of risk is through reductions in systematic risk
- The magnitude of the effect is stronger for mass shooting events with greater fatalities, for funds located closer to the shootings, and for funds run by managers more susceptible to fear of mass shootings
- Results are robust to alternative:
 - risk measures
 - controls and control groups

- Relative to non-exposed peers, professional fund managers exposed to a mass shooting event reduce risk following the mass shooting
- Reduction of risk is through reductions in systematic risk
- The magnitude of the effect is stronger for mass shooting events with greater fatalities, for funds located closer to the shootings, and for funds run by managers more susceptible to fear of mass shootings
- Results are robust to alternative:
 - risk measures
 - controls and control groups
 - event horizons

- Relative to non-exposed peers, professional fund managers exposed to a mass shooting event reduce risk following the mass shooting
- Reduction of risk is through reductions in systematic risk
- The magnitude of the effect is stronger for mass shooting events with greater fatalities, for funds located closer to the shootings, and for funds run by managers more susceptible to fear of mass shootings
- Results are robust to alternative:
 - risk measures
 - controls and control groups
 - event horizons
 - source of mass shooting data

- Risk reduction is temporary, lasting about one quarter following a mass shooting
- Implications different for temporary versus permanent effect.
 Temporary effect will induce greater volatility

So What? / Our Intended Contribution

 Document statistically and economically significant evidence that is consistent with fear inducing temporary reductions in financial risk taking

So What? / Our Intended Contribution

- Document statistically and economically significant evidence that is consistent with fear inducing temporary reductions in financial risk taking
- Provide first direct empirical evidence that visceral factors affect financial risk taking in actual markets

So What? / Our Intended Contribution

- Document statistically and economically significant evidence that is consistent with fear inducing temporary reductions in financial risk taking
- Provide first direct empirical evidence that visceral factors affect financial risk taking in actual markets
- Provide suggestive evidence that systematic changes in investors' emotional states could exacerbate countercyclical changes in risk taking (when combine the effect we document with finding that market downturns evoke fear (Cohn et al., 2015))

We utilize exposure to mass shootings as a proxy for fear

Mass shootings induce fear in individuals and communities (Lowe & Galea, 2017; Hawdon et al., 2014; Shultz et al., 2014; Vuori et al., 2013; Kaminski et al., 2010; Addington, 2003)

- Mass shootings induce fear in individuals and communities (Lowe & Galea, 2017; Hawdon et al., 2014; Shultz et al., 2014; Vuori et al., 2013; Kaminski et al., 2010; Addington, 2003)
- Mass shootings are relatively frequent

- Mass shootings induce fear in individuals and communities (Lowe & Galea, 2017; Hawdon et al., 2014; Shultz et al., 2014; Vuori et al., 2013; Kaminski et al., 2010; Addington, 2003)
- Mass shootings are relatively frequent
 - 254 mass shooting events in the U.S. from Q1 1999 to Q2 2016

- Mass shootings induce fear in individuals and communities (Lowe & Galea, 2017; Hawdon et al., 2014; Shultz et al., 2014; Vuori et al., 2013; Kaminski et al., 2010; Addington, 2003)
- Mass shootings are relatively frequent
 - 254 mass shooting events in the U.S. from Q1 1999 to Q2 2016
- Mass shootings are random

- Mass shootings induce fear in individuals and communities (Lowe & Galea, 2017; Hawdon et al., 2014; Shultz et al., 2014; Vuori et al., 2013; Kaminski et al., 2010; Addington, 2003)
- Mass shootings are relatively frequent
 - 254 mass shooting events in the U.S. from Q1 1999 to Q2 2016
- Mass shootings are random
 - unrelated to gangs, drugs, or organized crime

- Mass shootings induce fear in individuals and communities (Lowe & Galea, 2017; Hawdon et al., 2014; Shultz et al., 2014; Vuori et al., 2013; Kaminski et al., 2010; Addington, 2003)
- Mass shootings are relatively frequent
 - 254 mass shooting events in the U.S. from Q1 1999 to Q2 2016
- Mass shootings are random
 - unrelated to gangs, drugs, or organized crime
 - often occur in areas with low crime rates or no prior history of violence (Lowe & Galea, 2017)

- Mass shootings induce fear in individuals and communities (Lowe & Galea, 2017; Hawdon et al., 2014; Shultz et al., 2014; Vuori et al., 2013; Kaminski et al., 2010; Addington, 2003)
- Mass shootings are relatively frequent
 - 254 mass shooting events in the U.S. from Q1 1999 to Q2 2016
- Mass shootings are random
 - unrelated to gangs, drugs, or organized crime
 - often occur in areas with low crime rates or no prior history of violence (Lowe & Galea, 2017)
- Mass shootings are unconstrained by geography

- Mass shootings induce fear in individuals and communities (Lowe & Galea, 2017; Hawdon et al., 2014; Shultz et al., 2014; Vuori et al., 2013; Kaminski et al., 2010; Addington, 2003)
- Mass shootings are relatively frequent
 - 254 mass shooting events in the U.S. from Q1 1999 to Q2 2016
- Mass shootings are random
 - unrelated to gangs, drugs, or organized crime
 - often occur in areas with low crime rates or no prior history of violence (Lowe & Galea, 2017)
- Mass shootings are unconstrained by geography
 - 39 of the lower 48 states had at least one event during our sample period

- Mass shootings induce fear in individuals and communities (Lowe & Galea, 2017; Hawdon et al., 2014; Shultz et al., 2014; Vuori et al., 2013; Kaminski et al., 2010; Addington, 2003)
- Mass shootings are relatively frequent
 - 254 mass shooting events in the U.S. from Q1 1999 to Q2 2016
- Mass shootings are random
 - unrelated to gangs, drugs, or organized crime
 - often occur in areas with low crime rates or no prior history of violence (Lowe & Galea, 2017)
- Mass shootings are unconstrained by geography
 - 39 of the lower 48 states had at least one event during our sample period
 - limited concern of correlation between mass shooting locations and risk preferences of individuals who locate in specific areas

- Mass shootings induce fear in individuals and communities (Lowe & Galea, 2017; Hawdon et al., 2014; Shultz et al., 2014; Vuori et al., 2013; Kaminski et al., 2010; Addington, 2003)
- Mass shootings are relatively frequent
 - 254 mass shooting events in the U.S. from Q1 1999 to Q2 2016
- Mass shootings are random
 - unrelated to gangs, drugs, or organized crime
 - often occur in areas with low crime rates or no prior history of violence (Lowe & Galea, 2017)
- Mass shootings are unconstrained by geography
 - 39 of the lower 48 states had at least one event during our sample period
 - limited concern of correlation between mass shooting locations and risk preferences of individuals who locate in specific areas
- Mass shootings are uncorrelated with macroeconomic or local economic conditions

Why Mutual Fund Managers?

 Risk-taking decisions are observable and measurable over long periods of time

Why Mutual Fund Managers?

- Risk-taking decisions are observable and measurable over long periods of time
- Less heterogeneity in backgrounds, financial literacy, and skill sets among these subjects

Why Mutual Fund Managers?

- Risk-taking decisions are observable and measurable over long periods of time
- Less heterogeneity in backgrounds, financial literacy, and skill sets among these subjects
- Clearly stated investment objectives and styles

Why Mutual Fund Managers?

- Risk-taking decisions are observable and measurable over long periods of time
- Less heterogeneity in backgrounds, financial literacy, and skill sets among these subjects
- Clearly stated investment objectives and styles
- Have been shown to exhibit few behavioral biases (List, 2004; List, 2003)

Why Mutual Fund Managers?

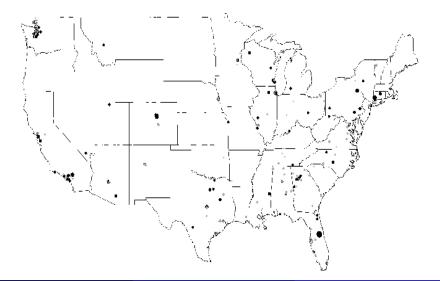
- Risk-taking decisions are observable and measurable over long periods of time
- Less heterogeneity in backgrounds, financial literacy, and skill sets among these subjects
- Clearly stated investment objectives and styles
- Have been shown to exhibit few behavioral biases (List, 2004; List, 2003)
- Evidence that managers imprint their own preferences on portfolios, despite fiduciary duty and governance mechanisms (Chevalier & Ellison, 1997; Chevalier & Ellison, 1999; Pool et al., 2019; Shu et al., 2016; Hong & Kostovetsky, 2012; Pool et al., 2012; Hong et al., 2005; Bernile et al., 2018)

Data Sources

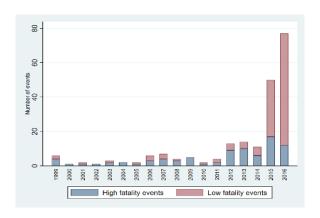
- Mutual Fund Data
 - CRSP Mutual Fund Database returns, fund characteristics, fund styles
 - Morningstar Direct fund share class map, fund characteristics, manager information
- Mass Shooting Data
 - Stanford Mass Shooting in America Database (SMSA) Primary source
 - Developed by the Stanford Geospatial Center at Stanford Univ.
 - Mass shootings defined as having at least 3 victims that are unrelated to gangs, drugs, or organized crime
 - Includes dates, numbers of victims and deaths, locations, location types, etc.
 - Mother Jones Mass Shooting Database Robustness
- Other Data Sources NSAR filings, NBER zip code distance files, R "gender" package, Ken French's website

Sample Construction

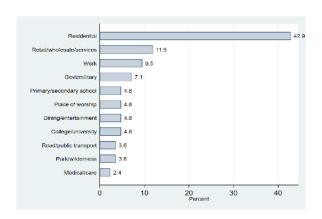
- Identify sample of mass shooting events
- Identify sample of candidate mutual funds
- Populate events identify treated and control groups
- Pool events ensure no cross contamination


1. Identify Sample Events

- Sample period 1Q 1999 to 2Q 2016
 - Daily return data available in CRSP as of 9-1-1998
 - SMSA database discontinued in July 2016
 - 254 total events
- Events included
 - Must have at least one fund manager within 100 miles of the event location
 - Calculate distances between event zip code and manager zip code
 - 210 sample events

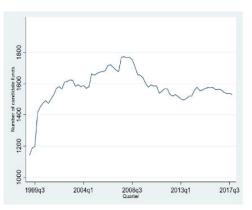

Ten Deadliest Mass Shootings

					Funds	
Date	Event	Location	Fatalities	Victims	100 mi.	50 mi.
06/12/16	Orlando Nightclub Massacre	Orlando, FL	50	102	26	8
04/16/07	Virginia Tech Campus	Blacksburg, VA	33	49	0	0
12/14/12	Sandy Hook Elementary School	Newtown, CT	28	29	628	104
12/02/15	San Bernardino, California	San Bernardino, CA	16	35	112	42
04/20/99	Columbine High School	Littleton, CO	15	37	48	48
04/03/09	Immigration Services Center	Binghamton,NY	14	17	4	0
11/05/09	Fort Hood Army Base	Fort Hood, TX	13	45	22	0
09/16/13	Washington Navy Yard	Washington D.C.	13	15	168	134
07/20/12	Movie Theater in Aurora	Denver, CO	12	70	52	52
03/10/09	Geneva County, Alabama	Geneva, AL	11	16	0	0


Mass Shootings Jan 1999 - June 2016

Mass Shootings by Year

Mass Shootings by Location Type



2. Identify Sample of Candidate Mutual Funds

Description	Observations	Unit of Observation
Initial CRSP share class sample 4Q1998 - 4Q2017	1,729,211	share class quarter
Drop ETFs	1,674,543	share class quarter
Drop variable annuities	1,515,912	share class quarter
Keep if CRSP objective code $=$ "E"	853,154	share class quarter
Drop share classes not merged to MS Direct	758,857	share class quarter
Drop index funds (defined)	716,672	share class quarter
Drop "index" funds (textual)	708,602	share class quarter
Drop if US Category Group = "Allocation"	642,287	share class quarter
Drop if US Category Group $=$ "International Equity"	471,234	share class quarter
Keep if Lipper class is in 12 box styles	374,729	share class quarter
Collapse to the fund level	131,307	fund quarter
Drop funds with missing zip codes	127,513	fund quarter
Drop funds with missing control variables	119,477	fund quarter
Drop small funds	113,604	fund quarter

2. Identify Sample of Candidate Mutual Funds

Candidate Funds

Average 1,575 funds per quarter

3. Populate Events

- From the candidate sample of funds, choose all funds during the quarter of the event
- Calculate distances between the event and fund adviser locations
- Categorize funds within 100 (or 50) miles as "treated" funds
- Categorize all other funds as "control" funds

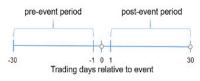
4. Pool Events

- Pool all events
- Drop all control funds in style categories without at least one treated fund
- Drop all funds from the control group that are in the treatment group of another event during the same quarter

Pooled Event Sample

210 Mass Shooting Events 146,816 Fund-Event Observations 700 Funds Per Event 85 Funds Per Event Style

			Fund Styles	
		Value	Growth	Core
	Large-Cap	Large-Cap Value	Large-Cap Growth	Large-Cap Core
Siz Mid-Cap		Mid-Cap Value	Mid-Cap Growth	Mid-Cap Core
Fund Sizes	Small-Cap	Small-Cap Value	Small-Cap Growth	Small-Cap Core
	Multi-Cap	Multi-Cap Value	Multi-Cap Growth	Multi-Cap Core


Summary Statistics

	Mean	Median	Std	5th	95th	N
MS dist	44.758	43.320	32.076	2.054	91.506	3,690
In(1+ MS dist)	3.390	3.791	1.115	1.116	4.527	3,690
I(MS dist. ≤ 100)	0.049	0.000	0.217	0.000	0.000	74,689
I(MS dist. < 50)	0.026	0.000	0.159	0.000	0.000	74,689
total volatility	1.087	0.937	0.481	0.575	2.098	74,689
market beta	1.019	1.007	0.188	0.726	1.349	74,689
idiosyncratic volatility	0.340	0.297	0.193	0.120	0.726	74,689
tracking error	0.378	0.318	0.233	0.127	0.864	74,689
market beta holding-based	1.065	1.044	0.178	0.807	1.384	55,851
equity weight	0.955	0.970	0.055	0.862	0.999	55,833
$\Delta \ln(\text{vol})$	-0.021	-0.022	0.307	-0.557	0.511	74,689
Δ mkt beta	-0.008	-0.005	0.124	-0.224	0.195	74,689
Δ In(idio vol)	-0.046	-0.051	0.255	-0.463	0.383	74,689
Δ In(track err)	-0.045	-0.051	0.257	-0.461	0.394	74,689
Δ mkt beta hold	-0.004	-0.003	0.049	-0.086	0.077	55,851
Δ equity weight	0.000	0.000	0.024	-0.040	0.041	55,833
lag TNA	1,539.635	251.300	5,821.432	10.900	6,052.900	74,689

Methodology

$$\Delta \ln(\sigma_{i,s,k}) = \beta Exposure_{i,k} + \gamma^{\mathsf{T}} \mathbf{x}_i + \delta_{s,k} + \epsilon_{i,k}$$

- $\Delta \ln(\sigma_{i,s,k})$ is the change in risk-taking of fund i in style category s, over the event period for event k
- Exposure_{i,k} is the treatment variable that is an indicator of the exposure of fund i's
 managers to event k
- ullet measures the average treatment effect of fear on fund risk-taking
- Regression includes style by event fixed effects, $\delta_{s,k}$, and a vector of lagged fund-level control variables (\mathbf{x}_i)
- Treatment effect is estimated relative to funds in the same style category over the same period of time
- Cluster standard errors by event and adviser zip code

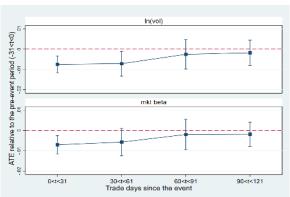
Fear and Risk Taking - by Severity

	All e	vents	Low fa	atality	High f	atality
	(1)	(2)	(3)	(4)	(5)	(6)
I(MS dist. < 100)	-0.003		-0.001		-0.004**	
` _ /	(-1.55)		(-0.46)		(-2.13)	
I(MS dist. \leq 50)	` ,	-0.002	` ,	0.001	` ,	-0.006**
` _ ,		(-1.08)		(0.36)		(-2.63)
Style-event FE	Yes	Yes	Yes	Yes	Yes	Yes
Adj-R-squared	0.93	0.93	0.93	0.93	0.93	0.93
N	146,778	146,778	72,108	72,108	74,670	74,670
Num. events	210	210	126	126	84	84

Fear and Risk Taking - Risk Types

	Δ mkt beta (1)	Δ In(idio vol) (2)	Δ In(track err) (3)
I(MS dist. \leq 50)	-0.006**	0.003	0.002
	(-2.42)	(0.57)	(0.32)
Style-event FE	Yes	Yes	Yes
Adj-R-squared	0.50	0.40	0.42
N	74,670	74,670	74,670
Num. events	84	84	84

Fear and Risk Taking - Distance


	ΔIn	(vol)	Δ mkt	beta
	(1)	(2)	(3)	(4)
I(MS dist. quartile 1)	-0.010***		-0.009***	
I(MS dist. quartile 2)	(-2.65) -0.003		(-2.75) -0.004	
I(MS dist. quartile 3)	(-1.13) -0.003		(-1.40) -0.003	
,	(-0.92)		(-0.94)	
I(MS dist. quartile 4)	0.000 (0.10)		0.000 (0.11)	
I(MS dist. \leq 100)	()	-0.014*** (-2.80)	()	-0.013** (-2.60)
I(MS dist. \leq 100) \times In(1+ MS dist)		0.003** (2.29)		0.003** (2.09)
Style-event FE	Yes	Yes	Yes	Yes
Adj-R-squared	0.93	0.93	0.50	0.50
N	74,670	74,670	74,670	74,670
Num. events	84	84	84	84

Fear and Risk Taking - Mechanism

	Δ mkt hbeta (1)	Δ equity weight (2)
I(MS dist. \leq 50)	-0.003**	-0.000
	(-2.03)	(-0.14)
Style-event FE	Yes	Yes
Adj-R-squared	0.12	0.02
N	55,836	55,818
Num. events	79	79

Dynamics of Fear and Risk Taking

$$\ln(\sigma_{i,s,k,t}) = \sum_{j=1}^{T} \beta_{j} \{ I(t=j) \times \textit{Exposure}_{i,k} \} + \gamma^{\mathsf{T}} \mathbf{x}_{i} + \delta_{s,k,t} + \psi_{i,k} + \epsilon_{i,k,t}$$

Fear and Risk Taking - Manager Traits

		$\Delta \ln(\text{vol})$			Δ mkt beta	
	(1)	(2)	(3)	(4)	(5)	(6)
I(MS dist. \leq 50)	-0.004** (-2.04)	-0.025*** (-3.13)	-0.150** (-2.34)	-0.005* (-1.88)	-0.022*** (-2.76)	-0.106 (-1.47)
I(MS dist. \leq 50) \times Prop. female mgrs	-0.017* (-1.72)	()	(-)	-0.014 (-1.50)	(, , ,	(-)
Prop. female mgrs	0.003 (1.60)			0.002 (1.02)		
I(MS dist. \leq 50) \times In(1+ mgr exp)		0.008** (2.33)			0.007* (1.80)	
In(1+ mgr exp)		0.001 (1.14)			0.002** (2.01)	
I(MS dist. \leq 50) \times In(mgr age)			0.038** (2.27)			0.026 (1.41)
In(mgr age)			0.004 (1.36)			0.005* (1.93)
Style-event FE	Yes	Yes	`Yes´	Yes	Yes	Yes
Adj-R-squared	0.93	0.93	0.93	0.50	0.50	0.50
N	73,247	73,247	59,833	73,247	73,247	59,833
Num. events	84	84	84	84	84	84

- Check validity of randomness assumption ▶ Balance Test 1 ▶ Balance Test 2
- Check sensitivity of our results to choices of:
 - Risk measures
 - Controls
 - Control groups
 - Event horizons
 - Data set ► Alternative Data
 - Fund styles
- Placebo tests
 ▶ Placebo Tests
- Test of alternative mechanism for risk reduction Alternative Mechanism

Balance Test - Fund Characteristics

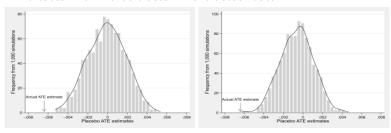
	$\frac{\ln(\text{TNA})}{(1)}$	$\frac{ln(age)}{(2)}$	$\frac{\text{exp ratio}}{(3)}$	$\frac{\text{turn ratio}}{(4)}$	$\frac{\text{prop fem}}{(5)}$	$\frac{\ln(mgr\ age)}{(6)}$	$\frac{\ln(\text{mgr exp})}{(7)}$	$\frac{\ln(\text{vol})}{(8)}$	mkt beta (9)	$\frac{\ln(\text{idio vol})}{(10)}$	$\frac{\ln(\text{track err})}{(11)}$
$I({\rm MS~dist.} \leq 50)$	0.095	0.027	-0.000	-0.026	-0.001	-0.001	0.007	0.005	0.005	-0.003	0.002
	(1.06)	(0.82)	(-0.85)	(-0.92)	(-0.22)	(-0.16)	(0.39)	(1.21)	(0.99)	(-0.25)	(0.18)
Style-event FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Adj-R-squared	0.04	0.09	0.10	0.07	0.01	0.08	0.11	0.91	0.48	0.65	0.66
N	74,670	74,670	74,670	74,670	73,247	59,833	73,247	74,670	74,670	74,670	74,670
Num. events	84	84	84	84	84	84	84	84	84	84	84

▶ Return to Robustness Slide

Balance Test - Zip Code Level Demographic Characteristics

	rural% (1)	In(pop density) (2)	female% (3)	white% (4)	married% (5)	college% (6)	In(med income) (7)
							. ,
$I(MS \text{ dist.} \leq 50)$	-0.041	0.166	-0.141	-0.265	0.522	0.106	0.031
	(-0.15)	(1.11)	(-0.22)	(-0.16)	(0.43)	(0.05)	(0.56)
Style-event FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Adj-R-squared	0.01	0.01	0.01	0.02	0.02	0.00	0.01
N	62,145	63,405	62,145	62,145	61,526	61,381	61,381
Num. events	84	84	84	84	84	84	84

▶ Return to Robustness Slide

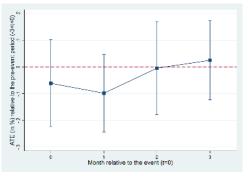

Alternative Data Source

	ΔIn	ı(vol)	Δ mkt beta		∆ In(idio vol)		Δ In(track err)	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
I(MS dist. < 50)	-0.008**		-0.008*		0.004		0.002	
. – ,	(-2.28)		(-1.96)		(0.67)		(0.22)	
I(0 < MS alt. dist. < 50)	, ,	-0.008**	,	-0.008**	` ,	0.005	, ,	0.003
` _		(-2.17)		(-2.11)		(0.75)		(0.44)
Style-event FE	Yes	`Yes ´	Yes	Yes	Yes	`Yes´	Yes	Yes
Adj-R-squared	0.91	0.91	0.41	0.41	0.39	0.39	0.42	0.42
N	44,236	44,236	44,236	44,236	44,236	44,236	44,236	44,236
Num. Events	44	44	44	44	44	44	44	44

▶ Return to Robustness Slide

Placebo Tests

- Conduct bootstrap simulations and randomize the assignment of the treatment
 - randomly assign treatment to the same number of funds that are actually treated within that cluster in our data
 - randomly assign treatment to the same number of ZIP codes that are treated within that cluster in the actual data


• actual estimate of the average treatment effect is larger in magnitude than all coefficients generated from both bootstrap samples

Alternative Mechanism - Could managers be responding to fund flows?

• We estimate the following equation:

$$\ln(\sigma_{i,s,k,t}) = \sum_{j=1}^{I} \beta_{j} \{ I(t=j) \times \textit{Exposure}_{i,k} \} + \gamma^{\mathsf{T}} \mathbf{x}_{i} + \delta_{s,k,t} + \psi_{i,k} + \epsilon_{i,k,t}$$

where the dependent variable is monthly fund flows.

(Regressions include months t = -2 to 3)

Concluding Remarks

- We document a causal effect of fear on risk taking among active mutual fund managers, consistent with the laboratory findings of Cohn et al. (2015) and Guiso et al. (2018)
- The effect is temporary, consistent with utility being represented as state dependent on visceral factors (Loewenstein, 2000)
- Combined with evidence that market downturns induce fear, our findings have the potential to help explain several empirical finance puzzles

Thank you for your time, attention, and feedback.