How Costly Are Cultural Biases? Evidence from FinTech

Francesco D'Acunto Boston College

> Pulak Ghosh IIM Bangalore

> > Rajiv Jain Faircent

Alberto G Rossi Georgetown University

2021 Cherry Blossom Financial Education Institute

Motivation

Discrimination pervasive in economic/financial choices (Becker, 1957)

- Agents make choices based on demographics of counterparts
- Statistical discrimination (e.g., Phelps, 1965)
 - Certain demographic groups have average quality below pop. median
 - Absent full information, demographic group provides info about expected quality.
- Taste discrimination (e.g., Becker, 1971; Akerlof and Kranton, 2000)
 - Dislike certain groups, willing to take costly actions to discriminate
 - Bias if performance ex post worse when discriminating
 - ► Cultural bias: distaste for group due to secular norms and customs

Empirical Challenges

- Need setting that separates statistical vs. taste discrimination
- Need to observe choices that are costly to discriminating agent
- Need benchmark to assess who, if anybody, is biased

This Paper

Propose a setting to test for/measure value of cultural biases

- Peer-to-peer (P2P) lending platform in India
- Robo-advising tool that makes decisions on behalf of lenders
- Can compare lenders' choices before/after robo-advising

This Paper

►

►

Propose a setting to test for/measure value of cultural biases

- Peer-to-peer (P2P) lending platform in India
- Robo-advising tool that makes decisions on behalf of lenders
- Can compare lenders' choices before/after robo-advising

Why is this setting unique to answer the question at stake?

- Little scope for *statistical discrimination*
 - Decoupling risk assessment from lending decisions
 - ► Platform screens, verifies borrowers. Monitors ex post
 - Lenders choose whom to fund within the (screened) pool

This Paper

Propose a setting to test for/measure value of cultural biases

- Peer-to-peer (P2P) lending platform in India
- Robo-advising tool that makes decisions on behalf of lenders
- Can compare lenders' choices before/after robo-advising

Why is this setting unique to answer the question at stake?

- Little scope for *statistical discrimination*
 - Decoupling risk assessment from lending decisions
 - ► Platform screens, verifies borrowers. Monitors ex post
 - Lenders choose whom to fund within the (screened) pool
- No role for better monitoring/lower moral hazard if discriminate
 - Local-bank lending: lenders might be better at monitoring members of own community, harder to monitor groups against whom they discriminate (e.g., see Fisman et al. 2020)
 - ► Here, lenders and borrowers all over India. No relationship lending

Why India?

Two forms of secular cultural biases (discrimination):

- In-group vs. out-group discrimination: Hindu vs. Muslim
 - ▶ Before and after independence (1947), violent conflict
 - Conflict fomented by political parties, regulation
- Stereotypical discrimination: Lower caste (Shudra)
 - Centuries-long social discrimination
 - Ingrained in society, no strong opposing forces
 - Not like white vs. minorities in the US
 - ► Caste not always easy to detect→exploit variation in recognizability
 - Instead, more obvious with minorities in the US

Main Result: Debiasing

Probability of Choosing Muslim Borrowers

Probability of Choosing Hindu Borrowers

Economically significant extent of discrimination. Drops with robo-advising ۰ Performance of favored groups improves after debiasing ۰

Related Literature

Discrimination in Economic Choices

- Statistical Discrimination
 - Phelps (1972); Borjas and Goldberg (1978) ... and many others
- Taste-Based Discrimination

Becker (1957); Akerlof and Kranton (2000); Parsons et al. (2011)

 $ightarrow \underline{Contribution}$: Providing a setting to disentangle statistical vs. taste discrimination

Robo-Advising: Humans vs. Machines

- <u>Overview of the field:</u> D'Acunto and Rossi (2020), D'Acunto and Rossi (2021)
- <u>Investments</u>: D'Acunto, Prabhala, Rossi (2019); Rossi and Utkus (2020); Reher and Sun (2020)
- Consumption/Saving: D'Acunto, Rossi, Weber (2020); Lee (2020); Gargano and Rossi (2020)
- Debt Management: Golsbee (2004); D'Acunto et al. (2021)

ightarrow <u>Contribution</u>: Using robo-advising to create a benchmark for rational decision-making

Data

We use 7 data sets + external aggregate socioeconomic data

- Borrower Characteristics, Lender Characteristics
- Matrimonial registry data
 - Includes religion and caste
- Lender-Borrower-Loan Mapping
 - ▶ Each loan is financed by at least 5 lenders
- Loan characteristics data
 - Cross-sectional: Interest rate, Maturity, Log(Amount), Status
- Loan Performance data
 - Panel loan by month, monthly paid amount
- Robo-advising (Auto Invest) usage data
 - > Date activation, share funds in Auto Invest (intensive margin)

In-group vs. Out-group Discrimination

Two forms of secular cultural biases (discrimination):

- In-group vs. out-group discrimination: Hindu vs. Muslim
 - ▶ Before and after independence (1947), violent conflict
 - Conflict fomented by political parties, regulation
- Stereotypical discrimination: Lower caste (Shudra)
 - Centuries-long social discrimination
 - Ingrained in society, no strong opposing forces
 - Not like white vs. minorities in the US
 - ► Caste not always easy to detect→exploit variation in recognizability
 - Instead, more obvious with minorities in the US

In-group vs. Out-group Discrimination

Probability of Choosing Muslim Borrowers

Probability of Choosing Hindu Borrowers

In-group vs. Out-group Discrimination: Intensive Margin

• \uparrow share funds in Auto Invest $\rightarrow \uparrow$ debiasing

In-group vs. Out-group Discrimination: Multivariate

 $\begin{array}{l} \textit{Muslim Borrower}_{i,j} = & \alpha + \beta \textit{ Auto Invest}_j + \gamma \textit{ Hindu Lender}_j + \\ & \delta \textit{ Hindu Lender}_j \times \textit{Auto Invest}_j + \zeta \textit{ X}_i + \eta_j + \epsilon_{i,j} \end{array}$

- Unit of observation: Lender-loan pair
- Loan Risk Measures (X_i): Annual interest rate, Maturity (months), Log(Amount)
- Lender fixed effect (η_j)
- S.e. clustered at the lender level (j)

In-group vs. Out-group Discrimination: Multivariate

*Muslim Borrower*_{i,j} = $\alpha + \beta$ Auto Invest_i + γ Hindu Lender_i+

 δ Hindu Lender_j × Auto Invest_j + ζ X_i + $\epsilon_{i,j}$

	Baseline	Borrower Char	Lender FE	Low Use Auto Invest	High Use Aut o Invest
	(1)	(2)	(3)	(4)	(5)
Hindu Lender × Auto Invest	0.04*** (2.51)	0.04*** (2.51)	0.04*** (2.02)	0.009 (0.22)	0.05*** (2.05)
Hindu Lender	-0.06*** (-3.52)	-0.06*** (-3.57)			
Auto Invest	-0.03 (-1.45)	-0.03 (-1.40)	-0.03 (-1.41)	0.01 (0.28)	-0.04 (-1.59)
Loan Risk Measures Lender FE N. obs.	113.284	X 113.283	X X 113.283	X X 39,366	X X 72.105

• Baseline discrimination: -0.06/0.12 (avg. Muslim share pre) \approx 50%

• Average drop in discrimination: $0.044/0.06 \approx 73\%$

Heterogeneity: Extent of Hindu-Muslim Conflict

- Ideally, exogenous variation in salience Hindu-Muslim conflict before lenders make their decisions
- Field setting: exploit variation in extent conflict at lenders' locations
- Three sources of variation Hindu vs. Muslim conflict:
 - City-level Hindu-Muslim riots (1980s onwards)
 - State-level vote shares for right-wing Hindu party (BJP)
 - Cohort-level exposure to Hindu-Muslim riots (younger lenders exposed in formative years)

Heterogeneity: Extent of Hindu-Muslim Conflict

Dependent variable:	Hindu-Muslim		BJP		Lender	
	Riots		Vote Share		Cohort	
Muslim Borrower	Low	High	Low	High	Young	Senior
	(1)	(2)	(3)	(4)	(5)	(6)
Hindu Lender $ imes$ Auto Invest	0.03	0.05***	0.02	0.14***	0.07***	0.01
	(0.75)	(2.62)	(0.88)	(4.05)	(3.19)	(0.18)
Hindu Lender	-0.03	-0.06***	-0.04*	-0.09***	-0.07***	-0.03
	(-1.28)	(-3.86)	(-1.94)	(-7.76)	(-4.37)	(-1.29)
Auto Invest	-0.01	-0.03*	0.01	-0.11***	-0.05***	0.02
	(-0.04)	(-1.79)	(0.28)	(-3.22)	(-2.31)	(0.72)
Loan Risk Measures N. obs.	46,079	X 67,204	X 94,909	X 15,251	X 44,689	68,594

• Baseline discrimination is higher for lenders exposed to Hindu-Muslim conflict

• Drop in discrimination is (consequently) higher for those lenders

Moving on to Stereotypical Discrimination

- Traditional (centuries-long) Hindu varna system
 - ► Four hierarchical varnas: *Shudra* bottom group
 - Traditionally segregation, humble jobs
 - ► Today still discrimination, segregation & set marriages
 - <u>Shudra themselves</u> prefer to interact with higher castes, more prestigious, highly perceived by other Shudras
- All lenders (including Shudra) would tend to discriminate Shudras

• Unique feature:

Castes are not disclosed. Variation in ease of recognition...

Variation in Lower-Caste Recognizability

- Algorithm that mimics human assessment of caste (Bhagavatula et al, 2018)
- Based on surname, location, occupation
- Substantial variation in extent Shudra borrowers are recognizable

Stereotypical Discrimination

Choosing Shudra (Discriminated) Borrowers: Caste Barely Recognizable (Pr>0)

Stereotypical Discrimination

Choosing Shudra (Discriminated) Borrowers: Caste Somewhat Recognizable (Pr>50%)

Stereotypical Discrimination

Choosing Shudra (Discriminated) Borrowers: Caste Easily Recognizable (Pr>70%)

From Debiasing to Changes in Performance

- Negative Effect on Loans' Performance?
 - Screening Channel (Ashraf et al, 2017)
 - Easier to assess the riskiness of borrowers from same religion/caste
 - BUT, risk assessment is performed by the platform
 - Monitoring Channel (Fisman et al., 2020)
 - Relationship banking, easier to monitor borrowers from one's community
 - BUT, no local lending here. Lenders and borrowers from all over India
 - Stigma/Moral Hazard Channel (Burstzyn et al., 2019)
 - Borrowers don't want to default on lenders of same religion/caste
 - ► BUT, no local lending here. No scope stigma default within community
- Positive Effect on Loans' Performance?
 - Taste-Based Discrimination Channel
 - Lenders prefer non-discriminated borrowers, dig deeper in that pool
 - Before debiasing, favorite borrowers should perform worse than others
 - After debiasing, favorite borrowers should be fewer and perform better

Performance, Intensive Margin: Before Auto Invest

- Size loss: 130K rupees (\approx \$1,770) for average lender
- Out of average investment of 1,200K rupees for average lender

Performance, Intensive Margin: After Auto Invest

• Size loss: drops by 65%

Conclusion: How Costly Are Cultural Biases?

Unique setting to assess two forms of cultural biases

- In-group vs. out-group discrimination
- Stereotypical discrimination

Empirical Evidence:

- Both forms detected, sizable magnitudes
- Both forms worsen lenders' performance (bad loans)

Policy Implications?

- <u>We do **not** know</u> if lenders are better off with debiasing
- Policy?: provide lenders with information on bias, let them decide if they want to debias by using robo-advising

Platform Pre-Screening of Prospective Borrowers

The P2P platform engages in a two-step screening process of borrowers

- <u>STEP 1</u>: Prospective borrowers are screened automatically based on hard information
- <u>STEP 2</u>: (Human) officers verify the identity and other information provided by prospective borrowers

 \rightarrow If accurate, these steps reduce the scope for statistical discrimination on the part of lenders

 \rightarrow Lenders know about these steps and observe the objective risk proxies the platform attaches to borrowers

Results of Platform's Pre-Screening

- Interest rates and loan amounts are assigned to borrowers based on hard information on risk profile
- If lenders were able to use soft info for statistical discrimination, lenders should perform better when discriminating
- We will see later that lenders perform worse when discriminating