Motivation

asic Facts

Portfolio & I

& Performance Changes

Beyond Performance

Conclusions

Appendix Slides

Who Benefits from Robo-Advising? Evidence from Machine Learning

Alberto G Rossi Georgetown University

> Stephen Utkus Vanguard

Global Financial Literacy Excellence Center Seminar Series

Motivation

- Most investors are not financially savvy
- Financial Advisers could help, but they
 - are expensive
 - generally ineffective (Linnainmaa, Melzer, and Previtero, 2016)
- Robo-advising potentially helpful
 - cheap and easy to use
 - can reach millions of people at low costs

 Data
 Basic Facts
 BRTs
 Portfo

 000
 00000000
 0000
 000

 00000000
 0000
 000
 000

Motivation

Portfolio & Performance Changes

Beyond Performance

Conclusions

Appendix Slides

Motivation

Appendix Slides

Research Agenda on Robo-advising

Handbook Chapter

• "Robo-advising," with D'Acunto (Palgrave Handbook of Tech. Finance, 2020)

Investment Decisions

- "The Promises and Pitfalls of Robo-advising," with D'Acunto & Prabhala (RFS, 2019)
- "Who Benefits from Robo-advising? Evidence from Machine Learning," with Utkus
- "The Needs and Wants in Financial Advice: Human vs Robo-Advising," with Utkus

Consumption and Saving Decisions

- "Crowdsourcing Peer Information to Change Spending Behavior," with D'Acunto & Weber (R&R at RFS)
- "There's and App for That: Goal Setting and Saving in the FinTech Era," with Gargano

P2P Lending Decisions

• "How Costly Are Cultural Biases? Evidence from FinTech," with D'Acunto, Ghosh, Jain

This Paper

Vanguard's Personal Advisor Services (PAS)

- largest hybrid robo-adviser in the world
- \$120B under management
- explosive growth since inception

The paper in a nutshell:

- effect of robo-advising on portfolio allocation
- who benefits from robo-advising

Key Features of PAS

At sign-up, investors are profiled on

- risk-tolerance
- investment horizons
- demographic characteristics

Investors are then proposed a comprehensive financial plan, i.e.,

- cash flow forecast
- probability of financing a secure retirement
- recommended portfolio strategy

Before approval, clients interact with a human who explains the plan

After approval, PAS trades automatically and rebalances quarterly

 \longrightarrow No Control from the Investor

Portfolio & Performance Changes

Beyond Performance

Conclusions O Appendix Slides

Uniqueness of the Setting

- Post enrollment, the portfolio allocations are mechanical
- Difficult to argue individuals would make these changes on their own
- ... and the results are not the effect of the robo-advisor
- If anything, concerned with timing of sign-up

Motivation

• Identification strategy for this concern

Machine learning to back out heterogeneity of the effect across investors

- Informative on what would be the effect on the general population...
- ... because a function of individuals' characteristics
- ML allows us to study non-linearities in the effects

Main findings

Across all clients:

- Portfolio Holdings: \uparrow bond, \downarrow cash, \approx equity
- Investment Vehicles: ↑ mutual funds, ↓ Individual stocks, ↓ ETFs
- Mutual Fund Characterstics: ↑ Indexed Mutual Funds, ↓ Fees
- ↑ International Diversification

Heterogeneity in robo-adviser effects:

- High benefits: clients with little experience, high cash holdings & trading
- Low benefits: clients with high share in mutual funds, high indexation

Sample of 350,000 investors that interacted with PAS

- Trades
- Monthly positions
- Demographic Characteristics : Age, Gender, Tenure, etc...
- Mutual fund characteristics and returns
- Stock Characteristics and Returns

 \rightarrow Construct investor characteristics & investment performance

Investor Characteristics at PAS Sign-up

Panel A. Demographic Characteristics

	N	Mean	St. Dev	Median
Age	80,690	63.22	12.80	65.00
Male	82,526	0.53	0.50	1.00
Tenure	82,498	14.18	9.30	14.17

Investor Characteristics at PAS Sign-up

. .

	Panel B. Portfolio Allocation			
	N	mean	St. Dev	Median
Wealth	82,526	\$588,245	\$832,296	\$282,449
Number of Assets	82,526	7.79	7.95	5.00
%Equity	81,869	0.54	0.31	0.59
%Bond	81,869	0.24	0.23	0.20
%Cash	81,869	0.22	0.34	0.02
%Mutual Funds	82,364	0.72	0.37	0.94
%Cash	82,364	0.20	0.34	0.01
%Stocks	82,364	0.03	0.10	0.00
%ETF	82,364	0.03	0.10	0.00
%Indexed Funds	82,523	0.47	0.37	0.46
%International Funds	77,083	0.10	0.14	0.02
%Emerging Funds	77,083	0.00	0.02	0.00

PAS and Portfolio Characteristics: BONDS

PAS and Portfolio Characteristics: BONDS 10th, 50th, and 90th percentiles

PAS and Portfolio Characteristics: Indexation

PAS and Portfolio Characteristics: International Exposure

PAS and Portfolio Characteristics: International 10th, 50th, and 90th percentiles

PAS and Portfolio Characteristics: Mgt Fees

PAS and Portfolio Characteristics

Some of the plots can be misleading: Equity Shares

PAS and Portfolio Characteristics

Equity share changes for low and high Equity holders at sign-up

 Basic Facts
 BRTs
 Portfolio & Performance Changes
 Beyo

 00
 00000000
 0000
 0000
 0000

 000000000
 0000
 0000
 0000

Beyond Performance

Conclusions

Appendix Slides

Who benefits from Robo-advising?

Focus on two measures:

- change in portfolio allocations
- change in investment performance

Problem:

- Not clear what investor characteristics matter ex-ante
- Not clear if the functional relations btw:
 - regressors
 - regressands

are linear and/or monotonic

kitchen sink linear regressions are likely to overfit

 \rightarrow use machine learning tool known as Boosted Regression Trees \rightarrow let the data speak

Machine Learning Vs. Traditional Statistics

Machine learning likely to outperform traditional statistics if you have:

- Large set of explanatory variables
- Potentially non-linear relation btw regressand and regressors
- Many interaction effects between regressors

As bigger datasets are becoming available

 \rightarrow Machine Learning is gaining momentum in finance and economics

 Data
 Basic Facts
 BRTs
 Portfolio & Performanc

 000
 00000000
 0000
 0000
 0000
 0000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 00000000
 0000000
 00000

Beyond Performance

Conclusions

Appendix Slides

Common Machine Learning Algorithms (Supervised Learning)

Non-exhaustive list from more to less familiar for economists:

- Ridge Regression & LASSO
- Bagging
- Random Forests
- Boosted Regression Trees
 - good out-of-sample performance
 - results economically interpretable
- Neural Networks

Regression trees

A regression tree, T_J , with J regions (states) and parameters $\Theta_J = \{S_j, c_j\}_{j=1}^J$ can be written as

$$\mathcal{T}(x,\Theta_J) = \sum_{j=1}^J c_j \ I \ (x \in S_j).$$

- $S_1, S_2, ..., S_J$: J disjoint states
- $x = (x_1, x_2, ..., x_P) : P$ predictor ("state") variables
- The dependent variable is constant, c_j , within each state, S_j

Regression Trees: Intuition

Key features:

- Partitioning using lines parallel to the coordinate axes
- Recursive binary partitioning
- Very hierarchical
- Use less and less data \rightarrow overfit

Boosting

A Boosted Tree Model is a sum of Regression Trees:

$$f_B(x) = \sum_{b=1}^B \mathcal{T}(x; \Theta_{J,b}).$$

The B-th boosting iteration fits a tree on:

$$\hat{\Theta}_{J,B} = \arg\min_{\Theta_{J,B}} \sum_{t=0}^{T-1} \left[\boldsymbol{e}_{t+1,B-1} - \mathcal{T}(\boldsymbol{x}_t;\Theta_{J,B}) \right]^2$$

where

$$e_{t+1,B-1} = y_{t+1} - f_{B-1}(x_t)$$

are the residuals of the model with "B-1" iterations.

To minimize the current residuals, the B-th tree finds:

- The optimal splitting regions, S_{j,B}
- The optimal constants, *c_{j,B}*

Conclusions . O

Appendix Slides

BRT vs linear models

1 Boosting Iteration

BRT vs linear models

5 Boosting Iterations

ions Appendia

BRT vs linear models

10,0000 Boosting Iterations

Why don't BRT overfit?

- Small Trees: Each tree fitted has only two states, J = 2
- Shrinkage: Parameter, λ = 0.001, determines how much each tree contributes to the overall fit:

$$f_B(x_t) = f_{B-1}(x_t) + \lambda \sum_{j=1}^J c_{j,B} I\{x_t \in S_{j,B}\}.$$

Subsampling: using half the data to fit each tree

Are BRT a Black Box?

NO!

Much more intuitive and interpretable than other ML techniques

Possible to obtain

• Relative Influence Estimates:

Relative importance of each predictor variable in a model

• Partial Dependence Plots:

Recovers functional relation btw regressand and each regressor

Appendix Slid

Use BRT to Explain Portfolio Changes

Approach:

- Model the pre and post-PAS Equity Share using BRT
- 10,000 boosting iterations
- Covariates:
 - 4 Demographics: Age; Married; Male; Tenure
 - **7 Portfolio:** %Equity; %Cash; %Mutual Funds; %Stocks; %ETFs; %Indexed Funds; %Emerging Funds
 - 4 Trading: Management Fees; Number of assets; Volume; N. of Transactions

Use BRT to Explain Portfolio Changes

Equity Share (81.9%); Age (15.6%); Percentage in Cash (2.1%)

Portfolio & Performance Changes

Beyond Performance

Conclusions

Appendix Slides

Use BRT to Explain Portfolio Changes

Bi-variate Plots: Equity Share and Age

Portfolio & Performance Changes

Beyond Performance

Conclusions

Appendix Slides

Comparison with linear model (Significant Regressors)

	Linear Model	BRT
Age	\checkmark	✓
Male	\checkmark	
Married	\checkmark	
Tenure		
Number of Assets	\checkmark	
%Equity	\checkmark	\checkmark
%Cash	\checkmark	\checkmark
%Mutual Funds		
%Stocks		
%ETFs		
%Indexed Funds		
%Emerging Funds		
Management Fees	\checkmark	
Volume		
N. Transactions		

Portfolio & Performance Changes

Beyond Performance

Conclusions

Appendix Slides

PAS & Performance Changes
Sharpe_{i,t} =
$$\alpha_i + \beta_t + \sum_{j=-5}^{35} \gamma_j ROBO_{i,j,t} + \epsilon_{i,t}$$

Portfolio & Performance Changes

Beyond Performance

Conclusions

Appendix Slides

PAS & Performance Changes (Identification Strategy)

Problem

Results reported so far do not control for endogenous decision to sign-up

People who do poorly may be the one who sign-up

 \rightarrow Performance improvement may be overstated

Solution

Construct counter-factual returns for those who sign-up for those periods when they were not signed-up

 \rightarrow Confirm the baseline results in this setting

Beyond Performance

Conclusions

Appendix Slides

PAS and Performance Changes

Within-individual Changes in Abnormal Sharpe Ratio

 Motivation
 Data
 Basic Facts
 BRTs
 Portfolio & Performance Changes
 Beyond Performance
 Conclusions
 Append

 000
 000
 00000
 0000
 0000
 0000
 000000
 000000
 000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 00000000
 000000000
 0000000000
 0000000

Use BRT to Explain Performance Changes

Approach:

- Model the pre and post-PAS Abnormal Sharpe Ratio using BRT
- 10,000 boosting iterations
- Covariates:
 - 4 Demographics: Age; Married; Male; Tenure
 - **7 Portfolio:** %Equity; %Cash; %Mutual Funds; %Stocks; %ETFs; %Indexed Funds; %Emerging Funds
 - 4 Trading: Management Fees; Number of assets; Volume; N. of Transactions

clusions A

Appendix Slides

Use BRT to Explain Performance Changes (Partial Dependence Plots)

Use AI to Explain Performance Changes (Partial Dependence Plots)

Basic Facts BRTs Portfolio & Pe

Portfolio & Performance Changes

Beyond Performance

Conclusions

Appendix Slides

Attention and Robo-advising

Basic Facts BRTs Portfolio 8

ance Changes Beyond Perfo

Beyond Performance Co

onclusions

Appendix Slides

Attention and Robo-advising

Attention_{i,t} =
$$\alpha_i + \beta_t + \sum_{j=-5}^{35} \gamma_j \text{ ROBO}_{i,j,t} + \delta X_{i,t} + \epsilon_{i,t}$$

Attention is measured as "Days with Logins" per month

 Basic Facts
 BRTs
 Portfolio & Per

 00000000
 0000
 0000

 0000000
 0000
 0000

ance Changes Beyond Perfo

Beyond Performance Con

Appendix Slide

Attention and Robo-advising

Attention_{i,t} =
$$\alpha_i + \beta_t + \sum_{j=-5}^{35} \gamma_j \text{ ROBO}_{i,j,t} + \delta X_{i,t} + \epsilon_{i,t}$$

Attention is measured as "Minutes" per month

Data Basic Facts E

BRTs Po 0 0000 0 000000 0

ortfolio & Performance Changes

Beyond Performance

Conclusions

Appendix Slides

Interaction with Human Advisors

Interaction_{i,t} =
$$\alpha_i + \beta_t + \sum_{j=0}^{35} \gamma_j \text{ ROBO}_{i,j,t} + \delta X_{i,t} + \epsilon_{i,t}$$

(a) Any Interactions

Interaction with Human Advisors

(a) Level 3

(b) Level 2

Motivation	Data	Basic Facts	BRTs	Portfolio & Performance Changes	Beyond Performance	Conclusions	Appendix Slide
000	000	000000000	0000 000000	0000 000000	0000000	0	000000

Attrition

Additional Results

In the paper, additional results on

- Determinants of robo-advice sign-up
- Determinants of robo-advice attrition
- Emphasis on the role of hybrid forms of robo-advice

Conclusions

- Robo-advice can improve portfolio allocations of already diversified investors
- Robo-advice has the potential to disrupt the entire financial advisory industry
- Simple forms of robo-advice can be successful
- Forms of hybrid robo-advising reduce attrition, likely because they reduce algorithmic-aversion
- Significant benefits unrelated to financial performance

Use AI to Explain Portfolio Changes-No Equity Share

Use AI to Explain Portfolio Changes-No Equity Share

 $R^2 = 26\%$

Portfolio Holdings of PAS and non-PAS clients

Top Mutual Fund Tickers in January 2017

	NON-PAS			PAS		
Rank	Ticker	Pct of Assets	Ticker	Pct of Assets		
1	VTSAX	16%	VTSAX	28%		
2	VFIAX	7%	VTIAX	18%		
3	VBTLX	7%	VBTLX	16%		
4	VTIAX	5%	VTABX	11%		
5	VWIUX	4%	VFIDX	6%		
	Total	39%	Total	79%		

PAS & Performance Changes (Identification Strategy)

Problem

Results reported so far do not control for endogenous decision to sign-up

People who do poorly may be the one who sign-up \rightarrow Performance improvement may be overstated

Solution

Construct counter-factual returns for those who sign-up for those periods when they were not signed-up

PAS & Performance Changes (Identification Strategy)

Example to fix ideas

PAS & Performance Changes (Identification Strategy)

Identification Results Using Matched Investor Returns as Benchmarks

	Top Decile	Top 2 Deciles	Top 3 Deciles	All Investors
Difference	-0.069*** (-29.98)	-0.071*** (-30.74)	-0.074*** (-31.60)	-0.072*** (-30.96)
Ν	297,134	297,134	297,134	297,134

Appendix Slides •००००००००

Out-of-Sample Performance

Crucial to evaluate the out-of-sample performance of BRT to

- Establish we are not over-fitting the training data ...
- ... and capturing the true structural relation btw the variables

Do the analysis on both:

- Changes in portfolio allocation (Easy)
- Changes in investment performance (More Challenging)

BRTs outperform linear model both in- and out-of-sample

BRTs out-of-sample performs better than linear model in-sample '

ance Conclusio O Appendix Slides

Out-of-Sample Performance

Crucial to evaluate the out-of-sample performance of BRT to

- Establish we are not over-fitting the training data ...
- ... and capturing the true structural relation btw the variables

Do the analysis on both:

- Changes in portfolio allocation (Easy)
- Changes in investment performance (More Challenging)
- \rightarrow Show that BRT easily outperform linear model

Out-of-Sample Performance

Cross-Validation Exercise:

- Use a BRT model and a linear model with the same covariates
- Estimate the model on all observations except for 1000 observations randomly removed
- Test the model on the remaining 1000 observations
- Compute in- and out-of-sample R²
- Compute the analysis 1000 times and average the results across simulation rounds

Results for Portfolio Changes

Results for Portfolio Changes

Out-of-Sample R-Squared

 Motivation
 Data
 Basic Facts
 BRTs
 Portfolio & Performance Changes
 Beyond Performance
 Conclusions
 Appendix Sides

 000
 000
 0000000
 000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000
 0000000

Results for Performance Changes

Data Basic Facts BR

Ts Portfolio & 0000 00000

olio & Performance Changes

Beyond Performance

Conclusions

Appendix Slides

With Higher Order Terms

Results for Performance Changes

Out-of-Sample R-Squared

Comments

- We can explain a lot of the variation in portfolio changes
- Only small part of the variation for investment performance
- Mean-Squared-Error is not an ideal measure of performance
- BRT outperform linear model both in- and out-of-sample
- BRT out-of-sample performs better than linear model in-sample