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Motivation

@ Most investors are not financially savvy

@ Financial Advisers could help, but they

@ are expensive
e generally ineffective (Linnainmaa, Melzer, and Previtero, 2016)

@ Robo-advising potentially helpful

e cheap and easy to use
e can reach millions of people at low costs
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Research Agenda on Robo-advising

Handbook Chapter
@ “Robo-advising," with D’Acunto (Palgrave Handbook of Tech. Finance, 2020)

Investment Decisions

@ “The Promises and Pitfalls of Robo-advising,” with D’Acunto & Prabhala (RFS, 2019)
@ “Who Benefits from Robo-advising? Evidence from Machine Learning,” with Utkus
@ “The Needs and Wants in Financial Advice: Human vs Robo-Advising,” with Utkus

Consumption and Saving Decisions

@ “Crowdsourcing Peer Information to Change Spending Behavior,” with D’Acunto &
Weber (R&R at RFS)

@ “There’s and App for That: Goal Setting and Saving in the FinTech Era,” with Gargano

P2P Lending Decisions

@ “How Costly Are Cultural Biases? Evidence from FinTech," with D’Acunto, Ghosh, Jain
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This Paper

Vanguard’s Personal Advisor Services (PAS)
@ largest hybrid robo-adviser in the world
@ $120B under management

@ explosive growth since inception

The paper in a nutshell:
@ effect of robo-advising on portfolio allocation

@ who benefits from robo-advising
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Key Features of PAS

At sign-up, investors are profiled on

@ risk-tolerance
@ investment horizons
@ demographic characteristics

Investors are then proposed a comprehensive financial plan, i.e.,

@ cash flow forecast

@ probability of financing a secure retirement

@ recommended portfolio strategy
Before approval, clients interact with a human who explains the plan
After approval, PAS trades automatically and rebalances quarterly

— No Control from the Investor



Motivation

[e]e] o]

Uniqueness of the Setting

@ Post enrollment, the portfolio allocations are mechanical

@ Difficult to argue individuals would make these changes on their own
@ ...and the results are not the effect of the robo-advisor

@ If anything, concerned with timing of sign-up

e Identification strategy for this concern

Machine learning to back out heterogeneity of the effect across investors
@ Informative on what would be the effect on the general population. ..
@ ...because a function of individuals’ characteristics

@ ML allows us to study non-linearities in the effects
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Main findings
Across all clients:
@ Portfolio Holdings: 1 bond, | cash, ~ equity
@ Investment Vehicles: T mutual funds, | Individual stocks, | ETFs
@ Mutual Fund Characterstics: 1 Indexed Mutual Funds, | Fees
@ 1 International Diversification
@ 71 Risk-Adjusted Performance
Heterogeneity in robo-adviser effects:
@ High benefits: clients with little experience, high cash holdings & trading

@ Low benefits: clients with high share in mutual funds, high indexation
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Data

@ Sample of 350,000 investors that interacted with PAS

Trades

Monthly positions

Demographic Characteristics : Age, Gender, Tenure, etc. . .

@ Mutual fund characteristics and returns

Stock Characteristics and Returns

— Construct investor characteristics & investment performance
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Investor Characteristics at PAS Sign-up

Panel A. Demographic Characteristics

N Mean St. Dev Median
Age 80,690 63.22 12.80 65.00
Male 82,526 0.53 0.50 1.00

Tenure 82,498 14.18 9.30 14.17
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Investor Characteristics at PAS Sign-up

Wealth
Number of Assets

Y%Equity
%Bond
%Cash

%Mutual Funds
%Cash
%Stocks

%ETF

%Indexed Funds
%lnternational Funds
%Emerging Funds

Panel B. Portfolio Allocation

N mean St. Dev Median
82,526 $588,245 $832,296 $282,449
82,526 7.79 7.95 5.00
81,869 0.54 0.31 0.59
81,869 0.24 0.23 0.20
81,869 0.22 0.34 0.02
82,364 0.72 0.37 0.94
82,364 0.20 0.34 0.01
82,364 0.03 0.10 0.00
82,364 0.03 0.10 0.00
82,523 0.47 0.37 0.46
77,083 0.10 0.14 0.02
77,083 0.00 0.02 0.00
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PAS and Portfolio Characteristics: BONDS
10th, 50th, and 90th percentiles
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PAS and Portfolio Characteristics: Indexation

index
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PAS and Portfolio Characteristics:
International Exposure
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PAS and Portfolio Characteristics: International
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PAS and Portfolio Characteristics

Some of the plots can be misleading: Equity Shares

Time
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PAS and Portfolio Characteristics

Equity share changes for low and high Equity holders at sign-up

Equity_share

-10 -5 0
Time

(a) Low Equity Share (b) High Equity Share
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Yerformance Conclusions

Who benefits from Robo-advising?
Focus on two measures:
@ change in portfolio allocations
@ change in investment performance
Problem:
@ Not clear what investor characteristics matter ex-ante

@ Not clear if the functional relations btw:

@ regressors
@ regressands

are linear and/or monotonic
@ kitchen sink linear regressions are likely to overfit

— use machine learning tool known as Boosted Regression Trees
— let the data speak
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Machine Learning Vs. Traditional Statistics

Machine learning likely to outperform traditional statistics if you have:
@ Large set of explanatory variables
@ Potentially non-linear relation btw regressand and regressors

@ Many interaction effects between regressors

As bigger datasets are becoming available

— Machine Learning is gaining momentum in finance and economics
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Common Machine Learning Algorithms
(Supervised Learning)

Non-exhaustive list from more to less familiar for economists:
@ Ridge Regression & LASSO
@ Bagging
@ Random Forests

@ Boosted Regression Trees
@ good out-of-sample performance
e results economically interpretable

@ Neural Networks
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Regression trees

A regression tree, 7, with J regions (states) and parameters
Oy ={S}, ¢}, can be written as

T(x,04) = ch (x € S)).
@ S5,S,,...,S,: Jdisjoint states

@ x = (X1, X2, ..., Xp) : P predictor (“state”) variables

@ The dependent variable is constant, ¢;, within each state, S;
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Regression Trees: Intuition

X1 <t
}
X2 <ta X1 <t
Xo <ty
Ry Ro> R3 |7—‘
Ra Rs

Key features:

@ Partitioning using lines parallel to the coordinate axes
@ Recursive binary partitioning

@ Very hierarchical

@ Use less and less data — overfit
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Boosting
A Boosted Tree Model is a sum of Regression Trees:

B
fa(x) = > T(X;Oup).
b=1

The B-th boosting iteration fits a tree on:

T-1
Oy =arg min > [err1.8-1 — T(X: ©u8)1°
»f =0

where

€111,8-1 = Y41 — fB—1(Xt)

are the residuals of the model with “B-1” iterations.

To minimize the current residuals, the B-th tree finds:

@ The optimal splitting regions, S; g
@ The optimal constants, ¢; g
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BRT vs linear models

1 Boosting Iteration

— = Linear Regression
- - - Boosted Regression Trees

dept

T T
001 002

T T T T T T
003 004 005 006 007 0.08
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BRT vs linear models

5 Boosting lterations

— = Linear Regression
- - - Boosted Regression Trees

dept

T T T T T T
003 004 005 006 007 0.08
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BRT vs linear models
10,0000 Boosting lterations

— = Linear Regression
- - - Boosted Regression Trees

dept

0.00

T T
001 0.02

T T T T T
003 005 006 007 0.08



Motivation Data Basic Facts BRTs Portfolio & Performance Changes Beyond Performance Conclusions Appendix Slides

000 000 000000000 0000 000 0000000 [e] 000000
0000 0000e0 000000 000000000

Why don’t BRT overfit?

@ Small Trees: Each tree fitted has only two states, J = 2

@ Shrinkage: Parameter, A = 0.001, determines how much each tree
contributes to the overall fit:

J
fa(xt) = fa_1(X) + A Y _ G.8l{x; € Sj8}.
j=1

@ Subsampling: using half the data to fit each tree
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Are BRT a Black Box?

NO!

Much more intuitive and interpretable than other ML techniques

Possible to obtain

@ Relative Influence Estimates:
Relative importance of each predictor variable in a model

@ Partial Dependence Plots:
Recovers functional relation btw regressand and each regressor
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Use BRT to Explain Portfolio Changes

Approach:
@ Model the pre and post-PAS Equity Share using BRT

@ 10,000 boosting iterations

@ Covariates:
o 4 Demographics: Age; Married; Male; Tenure

e 7 Portfolio: %Equity; %Cash; %Mutual Funds; %Stocks; %ETFs;
%Indexed Funds; %Emerging Funds

e 4 Trading: Management Fees; Number of assets; Volume; N. of
Transactions
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Use BRT to Explain Portfolio Changes

Equity Share (81.9%); Age (15.6%); Percentage in Cash (2.1%)

Equity Share Age % Cash

0.01
L

0.10
L
0.00
L

0.05
L
-0.02 -0.01
L

Partial Dependence
0
|
Partial Dependence
000
L

Partial Dependence

L
-0.04 -0.03

-0.05
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Use BRT to Explain Portfolio Changes
Bi-variate Plots: Equity Share and Age

Equity_Share
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Comparison with linear model

(Significant Regressors)
Linear Model BRT

Age

Male

Married

Tenure

Number of Assets
Y%Equity

%Cash

%Mutual Funds
%Stocks

%ETFs

%Indexed Funds
Y%Emerging Funds
Management Fees v
Volume

N. Transactions

AN N N
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PAS & Performaspce Changes

Sharpe,-,t =aj+ Gt + Z Yj ROBO,'J',[ + €t
j=—5
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PAS & Performance Changes
(Identification Strategy)

Problem
Results reported so far do not control for endogenous decision to sign-up

People who do poorly may be the one who sign-up
— Performance improvement may be overstated

Solution
Construct counter-factual returns for those who sign-up for those periods

when they were not signed-up

— Confirm the baseline results in this setting
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PAS and Performance Changes
Within-individual Changes in Abnormal Sharpe Ratio
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Use BRT to Explain Performance Changes

Approach:
@ Model the pre and post-PAS Abnormal Sharpe Ratio using BRT

@ 10,000 boosting iterations

@ Covariates:
o 4 Demographics: Age; Married; Male; Tenure

e 7 Portfolio: %Equity; %Cash; %Mutual Funds; %Stocks; %ETFs;
%Indexed Funds; %Emerging Funds

e 4 Trading: Management Fees; Number of assets; Volume; N. of
Transactions
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Use BRT to Explain Performance Changes
(Partial Dependence Plots)
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Use Al to Explain Performance Changes
(Partial Dependence Plots)

N. of Assets Traded Volume %Index

012
L
0.20
L
0.120

0.18
L

0.115
L

Partial Dependence
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L
0.16
L
0.110

Partial Dependence
Partial Dependence

0.10
L
0.14
L
0.105

0.09
L
0.12
L
0.100

0.10
0.095
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Attention and Robo-advising

35
Attention;,t =aj+ Bt + Z v ROBO/’/‘,[ +6 X,‘,t + €its
j=—5
N ¢
" ¢
(1]
° " **n.;%;‘
e00® AKX X]
Y
$94444
TR

TTT LI B B B s B e e TT T T T T T T T T T T T
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(a) Total (Days with Logins per month)
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Attention and Robo-advising

35
Attention,',t =aj+ Bt + Z Yj ROBO,’J)[ +46 X,’J + €it,
j=—5

5432101234567 8 8101112131415161 543210123456788101

(a) Attention Through Desktop Computer (b) Attention Through Mobile App

Attention is measured as “Days with Logins” per month
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Attention and Robo-advising

35
Attention; i = cj + B: + > 7 ROBO;j ¢+ 6 Xit + €i,
j=—5

50

LAFYYY ¢
ZERX RRUCTLINHERTY

50

54-3210123456788 54:32-10123456788

(a) Attention Through Desktop Computer (b) Attention Through Mobile App

Attention is measured as “Minutes” per month
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Interaction with Human Advisors

35
Interaction; ; = o + B + Z v ROBO; it + 6 Xit + €it,
j=0
® o . . . .
00%00 "e%00 ®0%p0 0% 0,0 o [
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(a) Any Interactions
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Interaction with Human Advisors
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Attrition
Percentage of Clients Remaining with Advice Percentage of Clients Remaining with Advice

85

] 2 4 o 2 4
‘Years Since Enroliment Years Since Enrolment
(a) Female; Male (b) Long-tenure; Short-tenure
Percentage of Clients Remaining with Advice Percentage of Clients Remaining with Advice

85

2 2
Years Since Enroliment Years Since Enrollment

(€) slow to Enroll; Quick to Enroll (d) Level 3; Level 2; Level 1
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Additional Results

In the paper, additional results on

@ Determinants of robo-advice sign-up

@ Determinants of robo-advice attrition

@ Emphasis on the role of hybrid forms of robo-advice

Appendix Slides
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Conclusions
@ Robo-advice can improve portfolio allocations of already diversified
investors

@ Robo-advice has the potential to disrupt the entire financial advisory
industry

@ Simple forms of robo-advice can be successful

@ Forms of hybrid robo-advising reduce attrition, likely because they
reduce algorithmic-aversion

@ Significant benefits unrelated to financial performance
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Use Al to Explain Portfolio Changes—No Equity Share

Partial Dependence

03

0.1

01

0.2

Y%Mutual Funds (33%)

Fees (31%)

Partial Dependence

0.10

0.05

0.00

-0.05

-0.10

Partial Dependence

-0.04 -0.03 -0.02 -0.01 0.00 0.01

-0.05

%Ind. Stocks (11%)
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Use Al to Explain Portfolio Changes—No Equity Share

Partial Dependence
-0.02 0.00

-0.04

-0.06

R2

Age (10%)

Indexation (8%)

%ETF (6%)

Partial Dependence

-0.06 -0.05 -0.04 -0.03 -0.02 -0.01

-0.07

Partial Dependence

-0.05

-0.10

-0.15
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Top Mutual Fund Tickers in January 2017

NON-PAS PAS
Rank Ticker Pct of Assets Ticker Pct of Assets

1 VTSAX 16% VTSAX 28%
2 VFIAX 7% VTIAX 18%
3 VBTLX 7% VBTLX 16%
4 VTIAX 5% VTABX 11%
5 VWIUX 4% VFIDX 6%

Total 39% Total 79%
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PAS & Performance Changes
(Identification Strategy)

Problem
Results reported so far do not control for endogenous decision to sign-up

People who do poorly may be the one who sign-up
— Performance improvement may be overstated

Solution
Construct counter-factual returns for those who sign-up for those periods
when they were not signed-up
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PAS & Performance Changes
(Identification Strategy)
Example to fix ideas
Unadvised Advised
Investor A L | | 1 | | | | 1 1 | | |
Jan 2014 Jan 2015 Jan 2016 Jan 2017 Jan 2018 Jan 2019 date
Unadvised Advised
[nvestor B | I I I I 1 I 1 | | I 1
Jan 2014 Jan 2015 Jan 2016 Jan 2017 Jan 2018 Jan 2019 date
Unadvised Advised date
Investor C | I I \ \ I I I \ \ I I I
Jan 2014 Jan 2015 Jan 2016 Jan 2017 Jan 2018 Jan 2019 date
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PAS & Performance Changes
(Identification Strategy)

Identification Results Using Matched
Investor Returns as Benchmarks

Top Decile  Top 2 Deciles  Top 3 Deciles  All Investors

Difference  -0.069*** -0.071** -0.074** -0.072+*
(-29.98) (-30.74) (-31.60) (-30.96)

N 297,134 297,134 297,134 297,134
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Out-of-Sample Performance

Crucial to evaluate the out-of-sample performance of BRT to

@ Establish we are not over-fitting the training data ...

@ ... and capturing the true structural relation btw the variables

Do the analysis on both:

@ Changes in portfolio allocation (Easy)

@ Changes in investment performance (More Challenging)
BRTSs outperform linear model both in- and out-of-sample

BRTSs out-of-sample performs better than linear model in-sample °

Appendix Slides
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Out-of-Sample Performance

Crucial to evaluate the out-of-sample performance of BRT to
@ Establish we are not over-fitting the training data ...

@ ... and capturing the true structural relation btw the variables

Do the analysis on both:

@ Changes in portfolio allocation (Easy)

@ Changes in investment performance (More Challenging)

— Show that BRT easily outperform linear model
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Out-of-Sample Performance

Cross-Validation Exercise:

@ Use a BRT model and a linear model with the same covariates

@ Estimate the model on all observations except for 1000 observations
randomly removed

@ Test the model on the remaining 1000 observations
@ Compute in- and out-of-sample R?

@ Compute the analysis 1000 times and average the results across
simulation rounds



Motivation Data Basic Facts BRTs Portfolio & Performance Changes Beyond Performance Conclusions Appendix Slides

000 000 000000000 0000 000 0000000 [e] 000000
0000 000000 000000 000e00000

Results for Portfolio Changes

8 - — BRTIn-Sample
— BRT Out-Of-Sample
—— Linear Model In-Sample
— Linear Model Out-Of-Sample
©
8
o
©
B8
- o
4
)
3
o
?
C g
©
o
N
0
)
o
o
o

0 5000 10000 15000 20000



Conclusions Appendix Slides

Motivation Data Basic Facts BRTs Portfolio & Performance Changes Beyond Performance
000 000 000000000 0000 0000 0000000 [e] 000000
000000 000000 0O000@0000

Results for Portfolio Changes

— linear Model
— BRT
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Results for Performance Changes
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With Higher Order Terms
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Results for Performance Changes

— linear Model
— BRT

40

Density
20
1

T
0.06

0.02

0.04

0.00

-0.02
Out-of-Sample R-Squared



BRTs Portfolio & Performance Changes Beyond Performance Conclusions Appendix Slides

o 000000

0O0000000e

Comments

@ We can explain a lot of the variation in portfolio changes

@ Only small part of the variation for investment performance
@ Mean-Squared-Error is not an ideal measure of performance
@ BRT outperform linear model both in- and out-of-sample

@ BRT out-of-sample performs better than linear model in-sample
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