

Financial Literacy Seminar Series

The Riskiness of Owning vs. Renting Housing

Scott Baker, Northwestern University

Thursday, November 21, 2019 Duquès Hall 451 Seminar 3:30 - 5:00 PM, Reception 5:00 - 6:00 PM

The Riskiness of Owning vs. Renting

Scott R. Baker Lorenz Kueng Lee M. Lockwood Pinchuan Ong

FRB/GW GFLEC, November 2019

Riskiness of owning vs. renting housing

Why focusing on housing?

- Housing: major consumption good and asset
 - $ightharpoonup \sim 1/4$ of expenditures and
 - $ightharpoonup \sim 1/2$ of non-human net assets (owners)
- Substantial risk, different exposures of owners vs. renters
- → Own/rent decision crucial portfolio choice driver of risk exposure

Which is safer: owning or renting?

- Owners exposed to substantial wealth risk (sale price)
- ► Renters exposed to substantial cost-of-living risk (rents)
- Lengthen housing 'tenure' and sale horizon ⇒ ↓ sale price risk, ↑ rent risk

Widely-held view by:

- financial advisers
- academics
- public
- ► Financial advice: Burton Malkiel, A Random Walk Down Wall-Street, 2012

"My advice is: Own your own home if you can possibly afford it. Real estate returns have often exhibited only a low correlation with other assets, thereby reducing the overall risk of an investment program."

Widely-held view by:

- financial advisers
- academics
- public
- ► Financial advice: Burton Malkiel, A Random Walk Down Wall-Street, 2012

"My advice is: Own your own home if you can possibly afford it. Real estate returns have often exhibited only a low correlation with other assets, thereby reducing the overall risk of an investment program."

► Academia: Sinai and Souleles, Owner Occupied Housing as a Hedge Against Rent Risk, QJE 2005 (SS'05)

"If residence spells were infinite (or in a dynastic setting, if descendants live in the same houses as their parents), homeownership would not be risky at all, since there would be no sale price risk."

Public: Adelino, Schoar and Severino, Perception of House Price Risk and Homeownership, NBERwp 2019

"In fact, a large majority of households (about 71%) view an investment in housing as safe [...] In contrast, only 18% of respondents consider stocks a safe investment, and 55% of respondents consider (government and corporate) bonds safe."

► Academia: Sinai and Souleles, Owner Occupied Housing as a Hedge Against Rent Risk, QJE 2005 (SS'05)

"If residence spells were infinite (or in a dynastic setting, if descendants live in the same houses as their parents), homeownership would not be risky at all, since there would be no sale price risk."

Public: Adelino, Schoar and Severino, Perception of House Price Risk and Homeownership, NBERwp 2019

"In fact, a large majority of households (about 71%) view an investment in housing as safe [...] In contrast, only 18% of respondents consider stocks a safe investment, and 55% of respondents consider (government and corporate) bonds safe."

Owning, Renting, and Human Capital Insurance

- ► Care about risk of entire portfolio, not any one position
- ► Earnings risk is biggest financial risk for most households
 - ► E.g. industry decline, outsourcing, displacement risk
- ▶ Difficult to insure with legal contracts b/c of economic and legal frictions
 - ► E.g. moral hazard & adverse selection, voluntary servitude is illegal
 - Especially difficult over long horizons

"We need to extend the domain of finance beyond that of physical capital to human capital. Livelihood insurance would protect against long-term risks.

In today's world we cannot insure against risk to our paychecks over years and decades, against the economic risk that our neighborhoods will gradually decay."

This paper: Role of exposure to local wages

- Rent risk is a valuable hedge against earnings risk
- Owning: lose hedge and exposed to house price risk
 - ► House price risk: large and highly correlated with earnings
 - "Doubles down" on wage and location-specific risks
 - ⇒ Owning much riskier for typical households
- ▶ Import. heterogeneity by location & HH characteristics
 - Elasticity of housing supply, industrial composition, etc.
 - Age, labor supply, housing demand, occupation, etc.

Contributions and Summary of Results

- ► Analyze evolution of wages, rents, house p's 1940–2010
 - ► Housing covaries strongly with wages over all horizons
 - Key role of location-specific changes
- Illuminate primary mechanisms and derive implications
 - Mech.: Location-specific shocks in spatial equilibrium
 - $\rightarrow\,$ Systematic heterog. in riskiness of owning vs. renting
 - → May increase efficiency costs of home-ownership subsidies, building restrictions

What this paper is NOT about

This paper does NOT...

- ...explain homeownership (positively or normatively)
 - ▶ We ignore many important aspects of ownership choice!
 - Instead, focus on portfolio implication of HO choice, taking into account local labor and housing markets
 - Focus is tenure choice's impact on budget constraint; preferences play secondary role
- identify shocks
 - We interpret long-run changes in (hedonic) prices as risk
 - Mostly focus on location-specific risk
 - Households take these local prices as given

Outline

- 1. Theory: Housing exposures and consumption risk
- 2. Data: Wages, rents, & house prices
- 3. Welfare: Costs of risk exposures
- 4. Policy implications

Outline

- 1. Theory: Housing exposures and consumption risk
- 2. Data: Wages, rents, & house prices
- 3. Welfare: Costs of risk exposures
- 4. Policy implications

Housing risk exposures

- Renting, owning create mirror-image exposures
 - ▶ Renter: short housing during stay, $\{-R_1, \ldots -R_T\}$
 - ightharpoonup Owner: long housing after stay, P_T
- Costs depend on correlation with rest of portfolio
 - Crucial element: Human capital (wage risk)
 - Assume costly to trade these exposures to wage risk
 - → incomplete markets: nonmarketed income
 - → implicit hedging demand

- Start off with intuition using static portfolio choice
- Recent literature collapses intertemporal portfolio to choosing PVs (e.g. Cochrane 2014)

Notation:*

- $ightharpoonup P_0$: home price in t=0 (known)
- $ightharpoonup P_T^{\rho\nu} \equiv P_T/(1+r)^T$: PV home price in t=T (uncertain)
- $ightharpoonup R \equiv PV(\lbrace R_t \rbrace) = \sum_{t=1}^T R_t/(1+r)^t$: PV of rents
- $Y \equiv PV(\{Y_t\})$: PV of outside income (human capital)
- $ightharpoonup C \equiv PV(\{C_t\})$: PV of (non-housing) consumption

 $[^]st$ We will account for homeowner's carrying costs in the empirical analysis.

Budget constraints of renter, owner, and "pre-payer":

$$egin{aligned} C_{rent} &= Y - R \ C_{own} &= Y + \left(P_T^{pv} - P_0
ight) \ C_{prepay} &= Y - E(R) \end{aligned}$$

- ▶ Pre-payer helps to separate housing risk exposures
 - Fully hedged against housing risk (eg. lifetime lease)
- Consumption risk (e.g., mean-variance preferences):

$$V(C_{prepay}) = V(Y)$$

$$V(C_{rent}) = V(Y) - 2Cov(Y, R) + V(R)$$

$$V(C_{own}) = V(Y) + 2Cov(Y, P_T^{pv}) + V(P_T^{pv})$$

Budget constraints of renter, owner, and "pre-payer":

$$egin{aligned} C_{rent} &= Y - R \ C_{own} &= Y + (P_T^{pv} - P_0) \ C_{prepay} &= Y - E(R) \end{aligned}$$

- ▶ Pre-payer helps to separate housing risk exposures
 - Fully hedged against housing risk (eg. lifetime lease)
- Consumption risk (e.g., mean-variance preferences):

$$egin{aligned} V(\mathcal{C}_{\textit{prepay}}) &= V(Y) \ V(\mathcal{C}_{\textit{rent}}) &= V(Y) - 2 \textit{Cov}(Y,R) + V(R) \ V(\mathcal{C}_{\textit{own}}) &= V(Y) + 2 \textit{Cov}(Y,P_T^{\textit{pv}}) + V(P_T^{\textit{pv}}) \end{aligned}$$

$$V(C_{rent}) = V(Y) - 2Cov(Y, R) + V(R)$$

$$V(C_{own}) = V(Y) + 2Cov(Y, P_T^{pv}) + V(P_T^{pv})$$

- Covariance and variance of housing cost with human capital are key
- ightharpoonup Cov(Y, R), $Cov(Y, P_T^{pv})$ enter with opposite signs
 - ightharpoonup Cov(Y,R) > 0 good, since renter is short housing
 - $ightharpoonup Cov(Y, P_T^{pv}) > 0$ bad, since owner is long housing
- ► Variances affected in opposite ways by increase in horizon
 - \triangleright V(R) increasing, $V(P_T^{pv})$ decreasing in horizon
 - $V(P) \gg V(R)$ in data ("excess volatility")

Dominant View: Sinai and Souleles (2005)

SS'05 ("Owner-Occupied Housing as a Hedge against Rent Risk") focus on **special case**:

$$Cov(Y, R) = Cov(Y, P_T^{pv}) = 0$$

$$V(C_{rent}) = V(Y) - 2Cov(Y, R) + V(R)$$

$$V(C_{own}) = V(Y) + 2Cov(Y, P_T^{pv}) + V(P_T^{pv})$$

$$\Rightarrow V(C_{own}) - V(C_{rent}) = V(P_T^{pv}) - V(R)$$

 \Rightarrow Owning riskier for small T, safer for large T: $V(C_{own}) < V(C_{rent})$

$$V(C_{rent}) = V(Y) - 2Cov(Y, R) + V(R)$$

$$V(C_{own}) = V(Y) + 2Cov(Y, P_T^{pv}) + V(P_T^{pv})$$

- ► With positive covariances:
 - → renting hedges income risk
 - → owning exacerbates income risk

Renter Rent risk can even *reduce* consumption risk relative to having no housing risk exposure (i.e., prepaying):

$$V(C_{rent}) < V(C_{prepay}) \iff rac{\sigma_{YR}}{\sigma_{P}^2} \equiv eta_{Y|R}^{ols} > 1/2$$

Owner Housing risk exposure o 0 as $T o \infty$

Intuition of Primary Results

- Buying vs. Renting in Detroit in 1950
 - Some of highest prices and wages in the nation
 - Owners: large declines in both their primary asset as well as their wages!
 - Renters: wage decreases partially offset by rent decreases
- ▶ Buying vs. Renting in Seattle in 1980
 - Seattle in 1980 had very low wages and rents prior to a multi-decade boom
 - Owners: dramatic increases in both their primary asset as well as their wages!
 - Renters: wage increases partially offset by rent increases
- ► In each case, owning doubles down on local/regional risk, while renting hedges it

Intuition of Primary Results

- Buying vs. Renting in Detroit in 1950
 - Some of highest prices and wages in the nation
 - Owners: large declines in both their primary asset as well as their wages!
 - Renters: wage decreases partially offset by rent decreases
- Buying vs. Renting in Seattle in 1980
 - Seattle in 1980 had very low wages and rents prior to a multi-decade boom
 - Owners: dramatic increases in both their primary asset as well as their wages!
 - Renters: wage increases partially offset by rent increases
- ► In each case, owning doubles down on local/regional risk, while renting hedges it

Intuition of Primary Results

- Buying vs. Renting in Detroit in 1950
 - Some of highest prices and wages in the nation
 - Owners: large declines in both their primary asset as well as their wages!
 - Renters: wage decreases partially offset by rent decreases
- Buying vs. Renting in Seattle in 1980
 - Seattle in 1980 had very low wages and rents prior to a multi-decade boom
 - Owners: dramatic increases in both their primary asset as well as their wages!
 - Renters: wage increases partially offset by rent increases
- ► In each case, owning doubles down on local/regional risk, while renting hedges it

Outline

- 1. Theory: Housing exposures and consumption risk
- 2. Data: Wages, rents, & house prices
- 3. Welfare: Costs of risk exposures
- 4. Policy implications

Evolution of wages, rents, and house prices

- Wages dominant determinant of income for most HHs, especially over life-cycle
- ► Goal of this section: Summarize evolution of (Y, R, P) in local markets throughout the US over horizons of up to 70 years
- ► Caveats:
 - Doesn't distinguish risk from predictable changes (for now; we use VAR in life-cycle model in appendix)
 - Less of an issue over long horizon (e.g., momentum small over 20 years)
 - Ignores within-market risk (large for house prices)

Data

- ► Main data: wages, rents, house prices from Decennial Census IPUMS, 1940–2010
 - Long coverage, rent data
 - Good match to FHFA, Corelogic, Zillow during overlaps
- Geographic units: commuting zones (CZs)
 - CZs: groups of counties meant to approximate labor markets; similar to MSAs but consistent over time
- ► Mostly expenditures (P x Q), not prices
 - We project off age and size effects
 - ► E.g., "wage" = residualized salary of full-time workers
 - Better-measured; key qs likely evolve slowly

Substantial Amounts of Risk

Table 2 - Wage, rent and home price risk

A. Overall risk	10 years	40 years	70 years
Full-time wage	17.8%	60.3%	43.5%
Rent	17.7%	67.4%	112.6%
Home value	33.3%	185.4%	303.7%
B. Location-level risk	10 years	40 years	70 years
Full-time wage	5.9%	11.9%	18.2%
Rent	12.3%	25.0%	38.8%
Home value	21.5%	36.2%	48.5%

Rent vs. wage growth: Decades – all variation

(Each circle represents a 10-year log change of rents and wages in a CZ, weighted by population.)

Home price vs. wage growth: all variation

Rent vs. wage growth: local variation

Home price vs. wage growth: local variation

Rent vs. wage growth: Full 1940-2010 period

Rent vs. wage growth: 30-year changes

Home price vs. wage growth: 30-year changes

Rent vs. wage growth in Dollars: Full 1940-2010

Price vs. wage growth in Dollars: Full 1940-2010

Correlation with wage risk

Table 2 – Wage, rent and home price risk

1 0 11 11	Correlation with wage growth rate over				
A. Overall risk	10 years	40 years	70 years		
Full-time wage	100.0%	100.0%	100.0%		
Rent	64.5%	76.3%	73.1%		
Home value	55.6%	70.7%	33.5%		
B. Location-level risk	10 years	40 years	70 years		
Full-time wage	100.0%	100.0%	100.0%		
Rent	66.7%	71.9%	73.1%		
Home value	58.6%	46.9%	33.5%		

Heterogeneity Across Counties/CZs

- Unsurprisingly, locations with more inelastic housing supply tend to have steeper price-wage relationships:
 - ► Saiz geographic land constraints index
 - ▶ Wharton Residential Land Use Regulation Index
 - Guren/McKay/Nakamura/Steinsson home price volatility

Patterns are Highly Robust

- Period: exclude Great Recession, post-war boom, etc.
- ► Market definition: CZs, counties, MSAs
- ▶ Migration & composition: drop movers, control for Δ pop
- New variables: total family income, gross rents; unadjusted values; distribution (p25, p50, μ , p75)
- ► Market segmentation: restrict to modal 5-room homes
- ► Survey responses: transaction prices from Zillow, FHFA
- "Placebos": nominal variables that should not vary as strongly with local demand: Social Security & utilities

"Placebo": SS income vs. wage (pooled decades)

"Placebo": Electricity cost vs. wage

"Placebo": Water vs. Wage

Annual Data Generating Process?

- \rightarrow Use annual BLS data for (Y, R) and Shiller's HPI for P
- ► Main findings
 - 1. High correlations (R, P, Y) also at annual frequency
 - ightharpoonup Cov(R, Y) similar at all horizons
 - Cov(P, Y) "attenuated" over short horizon, larger over longer horizon
 - ightharpoonup Cov(P, Y) also more sensitive to sample period
 - 2. Relation similar in BLS and Census data
 - ➤ To compare 10-year changes, we estimate annual VAR(2) and simulate 10-year changes for 500 locations

Rent vs. wage - Annual (BLS)

Empirical Findings and Implications: Summary

Findings:

- $ightharpoonup Cov(w,R), \ Cov(w,P) \gg 0 \ \text{and} \ V(P) \gg V(w) \gg V(R)$
- ► Key role of across-location heterogeneity, 1940–2010 Δ s: $\Delta w \in [\$15k, \$55k], \ \Delta R \in [\$2k, \$9k], \ \Delta P \in [\$50k, \$350k]$

Implications:

- For typical working HH, owning is riskier than believed
 - ▶ Rent risk likely reduces total risk: $\beta_{Y \to R}^{ols} > 1/2$
 - House price risk substantial (even CZ medians) and highly corr'd with wages
 - Owning eliminates rent risk hedge, ↑ exposure to wages

Outline

- 1. Theory: Housing exposures and consumption risk
- 2. Data: Wages, rents, & house prices
- 3. Welfare: Costs of risk exposures
- 4. Policy implications

Quantify welfare effects

How big of a deal is this? What would the WTP of a HH be to switch from lifetime owning to renting?

We do simple welfare calculation here (dynamic model in appendix yields similar results)

Compensating variation CV = WTP to eliminate all of the risk HH faces (in income as well as in housing costs),

$$v_0(E(Y-H)-CV)=E[v_0(Y-H)]$$

- H is housing cost
 - R for renter
 - $P_0 P_T^{pv} + PV$ (carrying costs) for owner
- \triangleright Y-H is non-housing consumption C (i.e., net income)

Quantify welfare effects

How big of a deal is this? What would the WTP of a HH be to switch from lifetime owning to renting?

► We do simple welfare calculation here (dynamic model in appendix yields similar results)

Compensating variation CV = WTP to eliminate all of the risk HH faces (in income as well as in housing costs),

$$v_0(E(Y-H)-CV)=E[v_0(Y-H)]$$

- ► *H* is housing cost
 - R for renter
 - $ightharpoonup P_0 P_T^{pv} + PV$ (carrying costs) for owner
- ightharpoonup Y H is non-housing consumption C (i.e., net income)

Model

Transparent, focus on role of housing cost and wage risk

- Frictionless model for now (no credit constraints)
- ightharpoonup One-time resolution of uncertainty (in t=1)
- → Only uncertainty *across* locations
 - No aggregate risk
 - No idiosyncratic within-location risk
- Non-parametric, using observed relative growth across CZs from 1940-2010
- ► Household either owns or rents for 70 years
- Utility is CRRA over non-housing consumption

Specification of lifetime PVs

- ightharpoonup T = 70 year horizon, r = 3%
- ightharpoonup Start from same location in t=0
 - ► Median income household in 2018
 - Dbtain home value for median HH
 - ► Rent using price-rent ratio = 11 (Willen et al (2019))
 - ▶ Draw 70-year (Y, R, P) from empirical distribution
- ► Full-time wage from age 25 to 64 (half in retirement)
- Annual carrying costs (in % of home price)
 - maintenance cost: 1.7%
 - property taxes: 2.0%
- Consumption floor at 1st percentile of C distribution

Stochastic processes

Certainty equivalents in static model

Ex-post, after prices are revealed, household solves

$$\max v_0 = \sum_{t=1}^T (1+r)^{-t} u(C_t)$$
 s.t. $C \leq Y - H$

- $ightharpoonup C_{rent} = Y R$
- $C_{own} = Y P_0 + P_T^{pv} + PV (carrying costs)$
- ightharpoonup Certainty equivalent: Willingness to pay at t=0 to eliminate all consumption risk

$$CV = E[C] - E[C(\omega)^{1-\sigma}]^{1/(1-\sigma)}$$

Quantify welfare effects

Table 4- WTP to avoid consumption risk (in % of lifetime consuption)

	Relative risk aversion (σ)				
A. Forever stayers	0.5	1	3	5	
Renting	0.21	0.43	1.34	2.31	
Prepaying housing costs (rent or own)	0.44	0.85	2.32	3.54	
Owning	0.46	0.89	2.41	3.64	
Prepaying - Renting	0.22	0.42	0.99	1.23	
Owning - Prepaying	0.02	0.04	0.09	0.10	
Owning - Renter	0.25	0.46	1.07	1.33	

Quantify welfare effects

Table 4 – WTP to avoid consumption risk (in % of lifetime consuption)

A. Forever stayers	Relative risk aversion (σ)				
	0.5	1	3	5	
Prepaying - Renting	0.22	0.42	0.99	1.23	
Owning - Prepaying	0.02	0.04	0.09	0.10	
Owning - Renter	0.25	0.46	1.07	1.33	
Prepaying - Renter	0.05	0.10	0.27	0.42	
Prepaying - Renter	0.05	0.10	0.27	0.42	
Owner - Prepaying	0.08	0.16	0.47	0.77	
				0.42 0.77 1.19	
Owner - Prepaying	$\frac{0.08}{0.13}$	0.16 0.26	0.47	0.77	
Owner - Prepaying Owner - Renter	$\frac{0.08}{0.13}$	0.16 0.26	0.47	0.77	
Owner - Prepaying Owner - Renter C. Moving randomly to new loo	$\frac{0.08}{0.13}$ eation every 40 year	0.16 0.26	0.47 0.74	0.77 1.19	

Outline

- 1. Theory: Housing exposures and consumption risk
- 2. Data: Wages, rents, & house prices
- 3. Welfare: Costs of risk exposures
- 4. Policy implications

Things We are Working on...

- Heterogeneity across households: Exposure to local wages (relative to housing)
 - ► Non-workers (e.g., retirees): Ideal housing exposure = 0
 - ightharpoonup "Power couples": Ideal = rent + sell rent insurance
 - Extent to which own wage covaries with local wages
- Heterogeneity across locations
 - ► Housing supply elasticity
 - $ightharpoonup \downarrow$ elasticity $\Rightarrow \uparrow$ relative risk of owning
 - ► Labor demand: industry concentration/corr. & volatility
 - $ightharpoonup \uparrow$ risk $\Rightarrow \uparrow$ bent to workers of renting, retirees of RM

Policy Implications

- Are people making mistaken own/rent choices?
 - ▶ 71% of US HHs believe housing is a "safe" investment
 - Own/rent decisions & intentions strongly correlated with perceptions of house price risk (Adelino et al 2018)
- Such mistakes could greatly increase efficiency costs of:
 - Homeownership subsidies
 - Building restrictions (increase relative risk of owning)
- In the paper, we quantify the:
 - increase in the deadweight loss of housing subsidies (first-order effect!)
 - ightharpoonup cost from misperceiving risk (eg. ignoring Cov(Y, H))

Housing as an Asset Class

- Analogous to investing in equity markets
 - Buying equities is a good investment!
 - But households are commonly advised to avoid investing in their employer's stock
 - More likely should short employer and invest in broad range of equity

- → Real estate may still be a desirable investment!
- → But likely optimal to hold diverse portfolio or concentrated position in location with uncorrelated/negatively correlated business cycle

Conclusion

- ► Evolution of wages, rents, house prices 1940–2010
 - Housing p's covary strongly with wages over all horizons
 - Important role of location-specific changes
 - Suggests large location-specific labor demand shocks
- Key factor for own vs. rent risk: exposure to local wages
 - For many HHs, owning riskier than renting (\sim 1-2% of C)
 - Major caveat to commonly-cited benefits of owning
 - Exacerbates several policy distortions
 - ► HHs make potentially sizable mistake by misperceiving correlation

Spatial equilibrium

- ▶ In equilibrium, occupied cities must be equally attractive
 - ► Higher wages ↔ higher cost-of-living (ceteris paribus)
 - ▶ Better amenities ↔ lower real wage (ceteris paribus)
- Features of spatial equilibrium
 - Especially powerful at life cycle-relevant horizons
 - Does not require perfect mobility, etc.

Roback 1982

 \rightarrow Prod. shock: Cov(w,R) > 0. \triangle Amenity: Cov(w,R) < 0 \rightarrow Data suggestive of labor demand risk (ie. productivity shocks) \gg amenity risk case

Lifetime PVs within location

Table 3 - Lifetime present values within location

A. Income and Housing Costs	Mean	Median	StDev	CoefVar	Corr(x, Y)
Full-time wage, Y	1,696,919	1,657,647	150,601	8.9%	100.0%
Rent, R	608,429	571,061	137,048	22.5%	74.6%
Capital gain	-200,614	-203,656	14,912	-7.4%	25.2%
Carrying costs: certain / risk-free	$249,\!560$	$249,\!560$	0	0.0%	0.0%
B. Non-Housing Consumption					
Renting	1,088,489	1,089,045	99,713	9.2%	47.6%
Prepaying housing costs (rent or own)	1,088,489	1,048,905	150,126	13.8%	100.0%
Owning	1.088.489	1.047.926	154.393	14.2%	99.5%

Financial Literacy Seminar Series

The Riskiness of Owning vs. Renting Housing

Scott Baker, Northwestern University

Thursday, November 21, 2019 Duquès Hall 451 Seminar 3:30 - 5:00 PM, Reception 5:00 - 6:00 PM