### Windfall Gains and Financial Risk Taking

Joseph Briggs Federal Reserve Board of Governors David Cesarini New York University

Erik Lindqvist Stockholm School of Economics Robert Östling IIES - Stockholm University

November 30, 2017

### Disclaimer

The views expressed in this presentation reflect only those of the authors and not those of the Federal Reserve Board of Governors nor the Federal Reserve System

### Question

What is the causal effect of wealth on financial risk taking? – Briggs, Cesarini, Lindqvist, Östling (2017a,b)

- What is the effect of a windfall gain on the probability of stock market participation?
- What is the effect of a windfall gain on the share of risky assets in a household's financial portfolio?
- What is the effect of a windfall gain on a household's balance sheet?

# Why do we care?

- Changes in wealth have been proposed to affect asset prices:
  - Limited stock market participation contributes to high equity premia (e.g. Saito (1995), Basak et al. (1998))
  - Time variation in risk aversion contributes to countercyclicality in risk premia (e.g. Constantinides 1990, Campbell et al. (1999))
- More broadly, precise estimates of the effect of wealth on financial risk taking inform mechanisms behind household financial decisions

# **Empirical Challenge**

- 1 Wealth shocks are rarely exogenous
- 2 Wealth is hard to measure accurately

"The ideal experiment would be to exogenously dump a large amount of wealth on a random sample of households and examine the effect ... on their risk-taking behavior"

- Chris Carroll (2002)

# Addressing this Challenge

- Sample of Swedish lottery players matched to administrative wealth records
  - \$500 million assigned to more than 300,000 individuals, underlying participant pool of  $\approx$  4 million
  - Three distinct lottery subsamples with different selection criteria
  - Institutional features that permit identification of causal effect
  - High quality wealth measures
  - High quality demographic and income measures and no attrition

# **Empirical Result 1**

- What is the causal effect of a wealth shock on the probability of stock market participation?
  - 150K USD causes 12 percentage point **increase** in stock market participation among pre-lottery equity market nonparticipants
  - Even among winners of more than 300K USD, majority pre-lottery equity market nonparticipants do not enter.
- Non-participation of the wealthiest households "is a significant challenge to financial theory" – Campbell (2006)
  - Challenge extends to nonwealthy nonaprticipants as well and is
    much larger than previously documented

# **Empirical Result 2**

- What is the causal effect of a wealth shock on the share of risky assets in a household's portfolio?
  - 150K USD causes 9 percentage point decrease in risky portfolio share among pre-lottery equity market participants
  - Negative effect robust across subpopulations and lotteries
- First paper to find empirical evidence that wealth causes a decrease in risky portfolio share
  - Brunnermeier et al. (2008) wealth causes no change
  - Calvet et al. (2009) wealth causes an increase
  - Chiappori et al. (2011) wealth causes no change
  - Paravisini et al. (2015) wealth causes an increase
- However, result is consistent with model featuring non-tradaeble income

# **Empirical Result 3**

- What is the causal effect of a wealth shock on household balance sheets?
  - Windfalls gain cause:
    - · Bank accounts to increase initially, but effect diminishes over time
    - No change in real estate holdings
    - Small reductions in outstanding debt
    - Modest increases in equity holdings
    - Large increases in bond holdings

# **Interpreting Results**

- Quantitative lifecycle portfolio choice model comparable to Gomes Michaelides (2005)
- When calibrated to match historical Swedish data, the model
  - 1 Overpredicts effect of wealth on stock market entry
    - Median entry cost of pprox300K USD needed to match estimated effects
  - 2 Overpredicts negative effect of wealth on risky portfolio share
    - Non-tradable human capital generates negative effect of wealth on risky portfolio share

### Literature

- Non-participation Mankiw Zeldes (1991), Halliasos Bertaut (1995), Vissing-Jørgensen (2002), Malmendier Nagel (2010), Andersen Nielsen (2011)
- Portfolio share Brunnermeir Nagel (2008), Calvet Campbell Sodini (2007,2009), Chiappori Paiella (2011), Calvet Sodini (2014)
- Structural portfolio choice models Samuelson (1969), Merton (1971), Viceira (2001), Gomes Michaelides (2005), Cocco (2005), Cocco Gomes Maenhout (2005), Davis Kubler Willen (2006), Khorunzhina (2013), Fagerang Gottlieb Guiso (2013)
- Behavioral Finance Guiso Japelli (2002, 2005), Vissing-Jørgensen (2003), Campbell (2006), Calvet Campbell Sodini (2007), Guiso Sapienza Zingales (2008), Grinblatt Keloharju Linnainmaa (2011)



### **2** Selected Statistical Analyses



# Lottery Data

### Kombi

- Subscription lottery run by Swedish Social Democrats
- Selection by political ideology

PLS

- Prize linked savings accounts
- Selection by bank account ownership

TV-Triss

- Scratch-ticket game/TV show
- Selection by lottery ticket purchase

# **Registry data**

- Year-end records of financial variables from 1999-2007
  - pprox 86% of all wealth
  - Stocks
  - Mutual Funds
  - Bonds
  - Bank Accounts
  - Debt
  - Real Assets
- Other demographic covariates, **Z**<sub>*i*,-1</sub>
  - Income
  - Age
  - Gender
  - Education
- All-Year and Post-1999 samples

|                          | Post-1     | 999  | Post- | 1999 by I | Lottery |
|--------------------------|------------|------|-------|-----------|---------|
|                          | Pooled     | Рор  | PLS   | Kombi     | Triss   |
|                          | <u>(1)</u> | (2)  | (3)   | (4)       | (5)     |
| Demographic              |            |      |       |           |         |
| Female                   | .516       | .516 | .575  | .436      | .558    |
| Age (years)              | 56.3       | 56.3 | 63.2  | 62.2      | 51.9    |
| Household Members (#)    | 1.97       | 1.97 | 1.75  | 1.81      | 2.13    |
| Household Income (K USD) | 38         | 37   | 28    | 31        | 43      |
| Married                  | .519       | .525 | .518  | .483      | .543    |
| Retired                  | .311       | .279 | .481  | .425      | .217    |
| Self-Employed            | .046       | .059 | .026  | .003      | .040    |
| Student                  | .026       | .032 | .032  | .078      | .052    |
| College                  | .193       | .257 | .229  | .153      | .216    |
| <u>Financial</u>         |            |      |       |           |         |
| Net Wealth (K USD)       | 131        | 161  | 220   | 124       | 127     |
| Gross Debt (K USD)       | 54         | 52   | 35    | 37        | 67      |
| Home Owner               | .702       | .630 | .666  | .732      | .686    |
| Equity Participant       | .591       | .558 | .682  | .625      | .560    |
| Risky Share              | .536       | .586 | .525  | .549      | .573    |

|                          | Post-1     | 999  | Post- | 1999 by I | Lottery |
|--------------------------|------------|------|-------|-----------|---------|
|                          | Pooled     | Рор  | PLS   | PLS Kombi |         |
|                          | <u>(1)</u> | (2)  | (3)   | (4)       | (5)     |
| Demographic              |            |      |       |           |         |
| Female                   | .516       | .516 | .575  | .436      | .558    |
| Age (years)              | 56.3       | 56.3 | 63.2  | 62.2      | 51.9    |
| Household Members (#)    | 1.97       | 1.97 | 1.75  | 1.81      | 2.13    |
| Household Income (K USD) | 38         | 37   | 28    | 31        | 43      |
| Married                  | .519       | .525 | .518  | .483      | .543    |
| Retired                  | .311       | .279 | .481  | .425      | .217    |
| Self-Employed            | .046       | .059 | .026  | .003      | .040    |
| Student                  | .026       | .032 | .032  | .078      | .052    |
| College                  | .193       | .257 | .229  | .153      | .216    |
| Financial                |            |      |       |           |         |
| Net Wealth (K USD)       | 131        | 161  | 220   | 124       | 127     |
| Gross Debt (K USD)       | 54         | 52   | 35    | 37        | 67      |
| Home Owner               | .702       | .630 | .666  | .732      | .686    |
| Equity Participant       | .591       | .558 | .682  | .625      | .560    |
| Risky Share              | .536       | .586 | .525  | .549      | .573    |

|                          | Post-1     | 999  | Post- | 1999 by I | Lottery |
|--------------------------|------------|------|-------|-----------|---------|
|                          | Pooled     | Рор  | PLS   | Kombi     | Triss   |
|                          | <u>(1)</u> | (2)  | (3)   | (4)       | (5)     |
| Demographic              |            |      |       |           |         |
| Female                   | .516       | .516 | .575  | .436      | .558    |
| Age (years)              | 56.3       | 56.3 | 63.2  | 62.2      | 51.9    |
| Household Members (#)    | 1.97       | 1.97 | 1.75  | 1.81      | 2.13    |
| Household Income (K USD) | 38         | 37   | 28    | 31        | 43      |
| Married                  | .519       | .525 | .518  | .483      | .543    |
| Retired                  | .311       | .279 | .481  | .425      | .217    |
| Self-Employed            | .046       | .059 | .026  | .003      | .040    |
| Student                  | .026       | .032 | .032  | .078      | .052    |
| College                  | .193       | .257 | .229  | .153      | .216    |
| <u>Financial</u>         |            |      |       |           |         |
| Net Wealth (K USD)       | 131        | 161  | 220   | 124       | 127     |
| Gross Debt (K USD)       | 54         | 52   | 35    | 37        | 67      |
| Home Owner               | .702       | .630 | .666  | .732      | .686    |
| Equity Participant       | .591       | .558 | .682  | .625      | .560    |
| Risky Share              | .536       | .586 | .525  | .549      | .573    |

|                          | Post-1 | 999  | Post-1999 by Lottery |       |       |  |  |
|--------------------------|--------|------|----------------------|-------|-------|--|--|
|                          | Pooled | Рор  | PLS                  | Kombi | Triss |  |  |
|                          | (1)    | (2)  | (3)                  | (4)   | (5)   |  |  |
| Demographic              |        |      |                      |       |       |  |  |
| Female                   | .516   | .516 | .575                 | .436  | .558  |  |  |
| Age (years)              | 56.3   | 56.3 | 63.2                 | 62.2  | 51.9  |  |  |
| Household Members (#)    | 1.97   | 1.97 | 1.75                 | 1.81  | 2.13  |  |  |
| Household Income (K USD) | 38     | 37   | 28                   | 31    | 43    |  |  |
| Married                  | .519   | .525 | .518                 | .483  | .543  |  |  |
| Retired                  | .311   | .279 | .481                 | .425  | .217  |  |  |
| Self-Employed            | .046   | .059 | .026                 | .003  | .040  |  |  |
| Student                  | .026   | .032 | .032                 | .078  | .052  |  |  |
| College                  | .193   | .257 | .229                 | .153  | .216  |  |  |
| Financial                |        |      |                      |       |       |  |  |
| Net Wealth (K USD)       | 131    | 161  | 220                  | 124   | 127   |  |  |
| Gross Debt (K USD)       | 54     | 52   | 35                   | 37    | 67    |  |  |
| Home Owner               | .702   | .630 | .666                 | .732  | .686  |  |  |
| Equity Participant       | .591   | .558 | .682                 | .625  | .560  |  |  |
| Risky Share              | .536   | .586 | .525                 | .549  | .573  |  |  |

|                          | Post-1 | 999  | Post- | 1999 by | Lottery |
|--------------------------|--------|------|-------|---------|---------|
|                          | Pooled | Рор  | PLS   | Kombi   | Triss   |
|                          | (1)    | (2)  | (3)   | (4)     | (5)     |
| Demographic              |        |      |       |         |         |
| Female                   | .516   | .516 | .575  | .436    | .558    |
| Age (years)              | 56.3   | 56.3 | 63.2  | 62.2    | 51.9    |
| Household Members (#)    | 1.97   | 1.97 | 1.75  | 1.81    | 2.13    |
| Household Income (K USD) | 38     | 37   | 28    | 31      | 43      |
| Married                  | .519   | .525 | .518  | .483    | .543    |
| Retired                  | .311   | .279 | .481  | .425    | .217    |
| Self-Employed            | .046   | .059 | .026  | .003    | .040    |
| Student                  | .026   | .032 | .032  | .078    | .052    |
| College                  | .193   | .257 | .229  | .153    | .216    |
| <u>Financial</u>         |        |      |       |         |         |
| Net Wealth (K USD)       | 131    | 161  | 220   | 124     | 127     |
| Gross Debt (K USD)       | 54     | 52   | 35    | 37      | 67      |
| Home Owner               | .702   | .630 | .666  | .732    | .686    |
| Equity Participant       | .591   | .558 | .682  | .625    | .560    |
| Risky Share              | .536   | .586 | .525  | .549    | .573    |

#### Table: Prize Distribution

| Prize Amount (USD)    | A. All-Year | B. Post-1999 |
|-----------------------|-------------|--------------|
| $L_i \leq 1.5K$       | 293,470     | 71,211       |
| $1.5K < L_i \le 15K$  | 16,020      | 742          |
| $15K < L_i \leq 75K$  | 3,348       | 1,240        |
| $75K < L_i \leq 150K$ | 232         | 89           |
| $150K < L_i \le 300K$ | 605         | 298          |
| $300K < L_i$          | 190         | 78           |

# Identification

### Identification

- Use institutional knowledge of lotteries to construct cells X<sub>i</sub> in which wealth is randomly assigned
- Control for for cell-fixed effects in statistical analyses

Estimating equation

$$Y_{i,s} = L_{i,0} \times \beta_s + \mathbf{Z}_{i,-1} \times \gamma_s + \mathbf{X}_i \times M_s + \eta_{i,s}$$

- *L<sub>i,0</sub>*: assigned wealth normalized by 1M SEK (150K USD)
- $Z_i$ : controls observed the year before the lottery
- Causal interpretation of β<sub>s</sub>: Lottery wealth is randomly assigned conditional on X<sub>i</sub>

### Identification

#### Table: Testing for Random Assignment

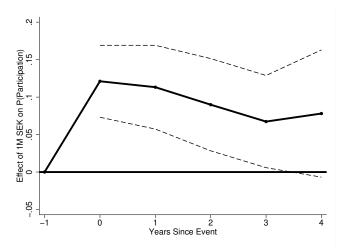
|                | All-Y      | Year        | Post  | -1999 |
|----------------|------------|-------------|-------|-------|
|                | Poc        | oled        | Poo   | oled  |
|                | <u>(1)</u> | (2)         | (7)   | (8)   |
| Fixed Effects  | Cells      | None        | Cells | None  |
| Demographic    | Controls   | i           |       |       |
| F-stat         | .69        | 11.54       | .87   | 10.01 |
| p              | .74        | <.001       | .56   | <.001 |
| Financial Cont | rols       |             |       |       |
| F-stat         | _          | _           | 1.81  | 12.80 |
| p              | —          | —           | .14   | <.001 |
| Demographic+   | Financia   | al Controls |       |       |
| F-stat         | _          | _           | 1.29  | 15.20 |
| p              | _          | —           | .22   | <.001 |

### Identification

#### Table: Testing for Random Assignment

|               | All-       | Year      | Pos   | t-1999 |
|---------------|------------|-----------|-------|--------|
|               | Poo        | oled      | Po    | oled   |
|               | <u>(1)</u> | (2)       | (7)   | (8)    |
| Fixed Effects | Cells      | None      | Cells | None   |
| Demographic   | Controls   | 6         |       |        |
| F-stat        | .69        | 11.54     | .87   | 10.01  |
| p             | .74        | <.001     | .56   | <.001  |
| Financial Con | trols      |           |       |        |
| F-stat        | _          | _         | 1.81  | 12.80  |
| p             | —          | —         | .14   | <.001  |
| Demographic   | Financi    | al Contro | ls    |        |
| F-stat        | —          | —         | 1.29  | 15.20  |
| p             | —          | _         | .22   | <.001  |




### **2** Selected Statistical Analyses



# Questions

- 1 Pre-lottery Equity Market Nonparticipants:
  - What is the effect of wealth on participation?
  - Are the effects nonlinear in prize size?
  - How can we interpret these results?
  - Preferences or Beliefs/Information?
- 2 Pre-lottery Equity Market Participants:
  - What is the effect of wealth on risky portfolio share?
  - Is the effect similar across subamples?
  - How does the effect compare to non-experimental estimates?
  - How can we interpret these results?
- B How are lottery winnings allocated?
  - What do we learn from allocation patterns?

What is the effect of wealth on equity market participation probability among pre-lottery nonparticipants?



Are the effects nonlinear in prize size?

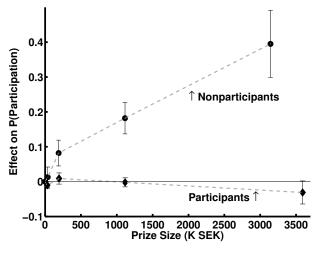



Figure: Categories (in K USD): 0-1.5, 1.5-15, 15-150, 150-300, 300+

How can we interpret these results?

$$Benefit_{i,t} = W_{i,t} \times RiskyShare_{i,t} \times (r_{i,t}^{ce} - r_t^f)$$

• Calibration (Vissing-Jørgensen (2003))

• 
$$(r_{i,t}^{ce} - r_t^f) = .04$$

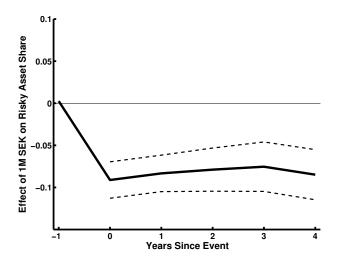
- RiskyShare<sub>i,t</sub> = .59
- Then  $W_{i,t} = 300 \text{K USD} \implies Benefit_{i,t} \approx 7,080 \text{ USD}$

#### Preferences or Beliefs/Information?

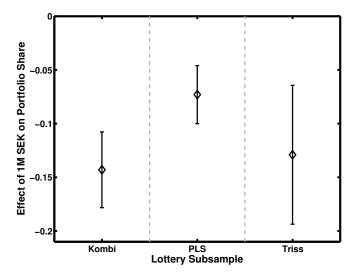
|          | -     | ross Liquidity Net<br>Debt Share Wealth |      |      |       |      | Self-<br>Employed |      | Home<br>Owner |      |
|----------|-------|-----------------------------------------|------|------|-------|------|-------------------|------|---------------|------|
|          | =0    | >0                                      | Low  | High | Low   | High | Yes               | No   | Yes           | No   |
| Effect   | .212  | .094                                    | .116 | .134 | .137  | .066 | .133              | .035 | .105          | .144 |
| SE       | .036  | .026                                    | .033 | .042 | .029  | .034 | .026              | .025 | .027          | .051 |
| p        | <.001 | <.001                                   | .000 | .001 | <.001 | .081 | <.001             | .348 | <.001         | .004 |
| N        | 9763  | 10150                                   | 6838 | 9147 | 15113 | 4780 | 19237             | 676  | 11652         | 8621 |
| Hetero p | .0    | 07                                      | .7   | '34  | .11   | 12   | .00               | 7    | .49           | 6    |

Unshown analyses:

- No effect on structured products rules out loss aversion
- Allocation to asset classes rules out status quo bias


#### Preferences or **Beliefs/Information**?

|          |       | Returns,<br>18-25 | Equity Returns<br>Last Year |          | Education |                          |          |      |      | nitive<br>kills |
|----------|-------|-------------------|-----------------------------|----------|-----------|--------------------------|----------|------|------|-----------------|
|          | Low   | High              | Negative                    | Positive | Primary   | Secondary                | Tertiary | Low  | High |                 |
| Effect   | .086  | .176              | .053                        | .140     | .067      | .134                     | .219     | .039 | .304 |                 |
| SE       | .030  | .036              | .039                        | .028     | .038      | .035                     | .035     | .055 | .147 |                 |
| 2        | .004  | .000              | .167                        | .000     | .077      | .000                     | .001     | .476 | .038 |                 |
| N        | 10591 | 8687              | 10402                       | 8876     | 9141      | 7320                     | 2233     | 804  | 957  |                 |
| Hetero p | .0    | 56                | .06                         | 69       |           | . <mark>044</mark> /.110 |          | .0   | 90   |                 |


Unshown analyses:

• Positive effect on subjective equity return beliefs

What is the effect of wealth on risky portfolio share among pre-lottery equity market participants?



Is the effect similar across subamples?





How do the estimates compare to non-experimental estimates?

|              | <i>s</i> = 2              | <i>s</i> = 2 <b>Year</b> |  |            | Year        |  |  |  |  |  |
|--------------|---------------------------|--------------------------|--|------------|-------------|--|--|--|--|--|
|              | OLS<br>(1)                |                          |  | OLS<br>(3) | TSLS<br>(4) |  |  |  |  |  |
| Full S       | ample                     | <u>. ,</u>               |  | <u>. /</u> | <u></u>     |  |  |  |  |  |
| $\Delta w_t$ | 014                       | 025                      |  | .003       | .045        |  |  |  |  |  |
| SE           | (.002)                    | (.069)                   |  | (.002)     | (.083)      |  |  |  |  |  |
| Brunn        | Brunnermeier Nagel (2008) |                          |  |            |             |  |  |  |  |  |
| $\Delta w_t$ | .023                      | 136                      |  | 013        | 012         |  |  |  |  |  |
| SE           | (.011)                    | (.076)                   |  | (.009)     | (.058)      |  |  |  |  |  |

$$\Delta_{s}\alpha_{t} = \beta_{s}\Delta_{s}w_{t} + \rho q_{t-s} + \gamma \Delta_{s}h_{t} + \epsilon_{t}$$

How can we interpret these results?

- Literature:
  - Brunnermeier Nagel (2008) wealth causes no change in portfolio share
  - Calvet et.al. (2009) wealth causes an increase in portfolio share
  - Chiappori Paiella (2011) wealth causes no change in portfolio share
  - Paravisini et.al. (2015) wealth causes an increase in portfolio share
- This study:
  - Change in wealth causes a decrease in portfolio share

How can we interpret these results?

$$V(W) = \max_{\alpha} \mathbb{E}[U(C)]$$
  
s.t.  $C = W((r - r_f)\alpha + (1 + r_f))$ 

If relative risk aversion is constant, then  $\alpha^{\star} = \bar{\alpha}$  independent of wealth.

How can we interpret these results?

$$V(W) = \max_{\alpha} \mathbb{E} \left[ U(C - X) \right]$$
  
s.t.  $C = W \left( (r - r_f) \alpha + (1 + r_f) \right)$ 

If relative risk aversion is constant, then  $\alpha^{\star} = \bar{\alpha}$  independent of wealth.

Allowing for consumption habit X, the allocation becomes

$$\alpha^{\star} = \bar{\alpha} \left( 1 - \frac{X}{W(1 + r_f)} \right)$$

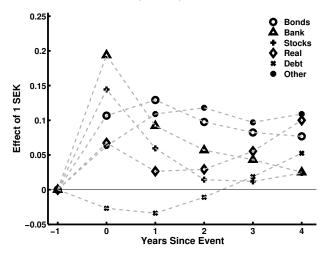
• Plausible explanation for findings in prior studies.

#### **Portfolio Share**

How can we interpret these results?

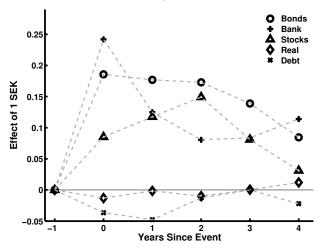
$$V(W) = \max_{\alpha} \mathbb{E} \left[ U(C - X) \right]$$
  
s.t.  $C = W \left( (r - r_f) \alpha + (1 + r_f) \right) + H$ 

If relative risk aversion is constant, then  $\alpha^{\star} = \bar{\alpha}$  independent of wealth.


Allowing for habit X and risky labor income H, the allocation becomes

$$\alpha^{\star} = \left(1 - \frac{X}{W(1 + r_f)} + \frac{\overline{H}}{W}\right) \left(\bar{\alpha} - \frac{\sigma_{h,r}}{\sigma_r^2}\right) + \frac{\sigma_{h,r}}{\sigma_r^2} \left(1 - \frac{X}{W(1 + r_f)}\right)$$

- Plausible explanation for findings in this study
- Plausible explanation for sensitivity to choice of instrument


## Allocation of Windfall Gain

Effect of Wealth on Asset Categories among Pre-lottery Equity Market Nonparticipants



## Allocation of Windfall Gain

Effect of Wealth on Asset Categories among Pre-lottery Equity Market Participants







#### **2** Selected Statistical Analyses



## Structural Model

Can a structural model of lifecycle portfolio choice replicate the effects on stock market participation and portfolio choice?

- Lifecycle portfolio choice model comparable to Gomes Michaelides (2005) (and others)
  - Preferences: Epstein-Zin utility
  - Two assets: risk free and equity
  - Equity returns: lognormal distribution
  - Income: stochastic permanent and transitory component
  - Mortality: age specific survival probability s<sub>t</sub>
  - State variables: wealth, permanent income, prior participation
  - Choices: consumption, saving, participation, equity share
  - Costs: one-time entry cost, per-period participation cost

#### **Structural Results**

Experiment:

- 1 Solve model and save policy functions
- Por every member of the lottery data set, simulate windfall gain and subsequent participation and portfolio choices
- 3 Repeat statistical analysis on simulated data set

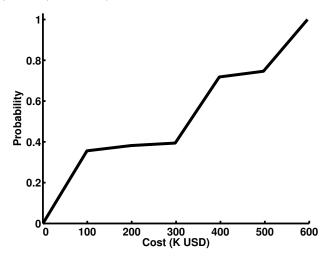
#### **Structural Results**

# Comparison of Model-Predicted Effect of 150K USD to Empirical Estimates.

|                 |          |          |       |                      |               | Lower Eq. |
|-----------------|----------|----------|-------|----------------------|---------------|-----------|
|                 | Estimate | Baseline | Habit | $\sigma_{n,s} = .15$ | ho = <b>8</b> | Premium   |
| Effect          | (1)      | (2)      | (3)   | (4)                  | (5)           | (6)       |
| Participation   |          |          |       |                      |               |           |
| Nonparticipants | .121     | .253     | .231  | .209                 | .223          | .178      |
| Portfolio Share |          |          |       |                      |               |           |
| Participants    | 091      | 123      | 204   | 081                  | 143           | 112       |

How large would entry costs need to be to match the estimated effect on participation probability?

• Parametrize distribution of equity market entry and participation costs ( $\Theta = [\theta_{\chi}, \theta_{\kappa}]$ )


$$egin{aligned} \kappa_{\textit{i}} &\sim \textit{F}_{ heta_{\kappa}}(\kappa) \ \chi_{\textit{i}} &\sim \textit{G}_{ heta_{\chi}}(\chi), \end{aligned}$$

Estimate cost distributions using Method of Indirect Inference

$$\hat{\Theta} = rg \min_{\Theta} (\hat{eta} - ilde{eta}(\Theta))' oldsymbol{W} (\hat{eta} - ilde{eta}(\Theta))$$

- $\hat{\beta}$  vector of empirical coefficients
- $\hat{\beta}$  vector of model implied coefficients
- Additional assumption:  $P_t = 1$

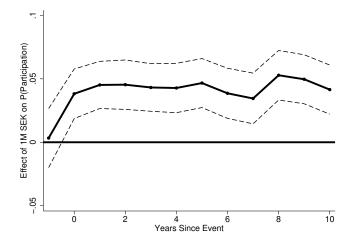
How large would entry costs need to be to match the estimated effect on participation probability?



Participation Costs

What if the windfall gain affects both wealth and income?

- Portfolio share increases in permanent income, decreases in financial wealth
- Experiment: Hold present discounted value of windfall gains constant, but assign half to an increase in *P*<sub>t</sub>
  - Effect on stock market participation: .214
  - Effect on risky asset share: -.017
- More closely replicates findings in other studies.


## Conclusion

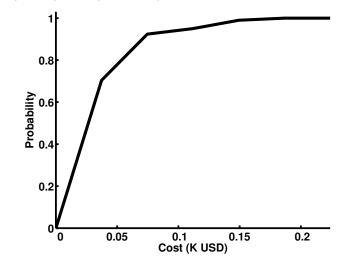
- Exogenous assignment of wealth causes 9 percentage point decrease in risky portfolio share among pre-lottery participants
  - Counterintutitive, but aligns with quantitative predictions of standard model under multiple extensions
- Exogenous assignment of wealth causes 12 percentage point increase in stock market participation probability among pre-lottery nonparticipants
  - Intuitive, but difficult to align with quantitative predictions of standard model, even after introducing multiple extensions
  - Suggestive evidence that education/information/beliefs explain small effects on entry
- Risky asset share can not be interpreted as proxy for risk aversion without carefully controlling for future labor income
- Two types of investors

#### $L_{i,0} = X_i \times \Gamma + \mathbf{Z}_{i,-1} \times \rho_{-1} + \epsilon_i$



#### What is the causal effect of wealth on participation probability?




Back

## Marginal Propensity to Consume Upper Bound of MPC from Lottery Wealth\*\*

0.45 0.4 0.35  $\beta_{s+1}(W) - \beta_{s+1}(W)$ 0.3 0.25 0. 0.15 Q↓ Nonparticipants 0. 0.05 Participants 2 -0.05 0 2 3 4 Years Since Event

\*\*Important caveat: Wealth measures cover only approximately 86% of total wealth. Furthermore, home improvements, car and other durables, donations, and money transferred to non-spouse family members are not accounted for.

How large would participation costs need to be to match the estimated effect on participation probability?

