Explaining Consumption Excess Sensitivity with Near-Rationality:
Evidence from Large Predetermined Payments

LORENZ KUENG

Northwestern University and NBER
Motivation:

- understanding consumption is important
 - consumption is about 2/3 of GDP in developed countries
 - effectiveness of stabilization policies depends on consumption response to often predictable cash flows

- standard model (PILCH) has two main predictions for consumption:
 1. *should* respond to news
 2. *should not* respond to timing of cash flows; i.e., predetermined income (*excess sensitivity*)

- previously I focused on the first prediction, now I turn to the second
Preview:

▶ use new transaction data from user accounts at large personal finance website

▶ combine with quasi-experiments from annual Alaska Permanent Fund Dividend (PFD)
 ▶ salient (large news coverage and own website)
 ▶ predetermined (known 1 month before; size based on past)
 ▶ large payments every Oct to each Alaskan ($2,072 in 2015)

▶ payment properties and data sample favor standard model
 ▶ yet, I find a large response to the PFD:
 ▶ using both non-parametric and parametric methods
 ▶ nondurables MPC of 30%

▶ the new data and the properties of the PFD rule out most previous explanations of excess sensitivity
derive **potential loss** in wealth from fully consuming PFD instead of fully smoothing

\[
\text{Loss} \propto \frac{PFD}{cT}
\]

- \(\frac{PFD}{cT}\) is the relative size of the payment normalized by consumption (permanent income)
- can be calculated *ex-ante* to predict excess sensitivity

- potential loss **predicts heterogeneity** in MPCs
 - MPCs are steeply *decreasing* across loss quintiles

- maybe surprisingly, this is consistent with high-income households having *larger* MPCs
 - indeed, MPCs are strongly *increasing* in income
welfare losses fully explain heterogeneity in MPCs among unconstrained hh: *ex-post losses* are the same across hh and small

⇒ these are *near-rational deviations*
welfare losses fully explain heterogeneity in MPCs among unconstrained hh: *ex-post losses* are the same across hh and small

⇒ these are near-rational deviations

Conclusion

1. **Near-rational deviations** from standard model predict heterogeneity in MPCs in the cross section
 - for higher-income households, who have sufficient liquid wealth
 - estimated using a single source of predetermined income within the same research design

2. Show **borrowing constraints** continue to predict high MPCs
 - for lower-income households with few liquid assets

⇒ this is a *new* explanation for a different population segment
Previous explanations of excess sensitivity:

- **borrowing constraints**
 - majority of sample has large amounts of *liquid* assets
 - not wealthy hand-to-mouth consumers

- **precautionary saving**
 - no uncertainty in the month of the dividend payments
 - low uncertainty of dividend in all other months
 - most households have lots of liquid wealth

- **rational inattention, cons. commitments, optimization frictions**
 - should only respond to new information since last update
 - reasonable forecast errors are positive and negative
 - news component is very small
 - instead, households respond to *entire* dividend

- **non-separable preferences**
 - dividend is independent of future labor income growth
 - response across all categories, including strictly nondurables
Outline:

1. quasi-experiment and data

2. average excess sensitivity
 ▶ nonparametric evidence
 ▶ parametric estimate of MPC

3. near-rationality and higher-income hh MPCs

4. liquidity constraints and lower-income hh MPCs

5. external validity using the Consumer Expenditure Survey

6. robustness
 ▶ consumption vs. spending
 ▶ specification checks

7. extensions
 ▶ durables and total expenditure MPCs
 ▶ anticipation effects
 ▶ consumption commitments
Outline:

1. quasi-experiment and data

2. average excess sensitivity
 ▶ nonparametric evidence
 ▶ parametric estimate of MPC

3. near-rationality and higher-income hh MPCs

4. liquidity constraints and lower-income hh MPCs

5. external validity using the Consumer Expenditure Survey

6. robustness
 ▶ consumption vs. spending
 ▶ specification checks

7. extensions
 ▶ durables and total expenditure MPCs
 ▶ anticipation effects
 ▶ consumption commitments
Alaska Permanent Fund Dividend:

Annual payment from state’s broadly-diversified wealth fund

Important characteristics of PFD for excess sensitivity tests:

1. *salient, predetermined, and regular*
 - 5-year moving average of fund’s income:
 - highly predictable
 - payment size is orthogonal to local economy
 - based on June numbers, announced in Sept., paid in October
 - well covered by local media during the year

2. *nominally large*
 - latest dividend: $2,072 in October 2015
 - for each Alaskan, including children (avg family size = 2.7)

3. *lump-sum*
 - more important for low-income households and large families
 ⇒ cross-sectional heterogeneity in the importance of the PFD
Historical Dividend Distributions

- Permanent Fund Dividend (PFD)
- PFD, including one-time resource rebate

Sample period used in Hsieh (2003)
Salience: Expected divided based on narrative analysis of local newspapers
Salience: Alaska Permanent Fund’s website
Salience: Expected divided based on Permanent Fund’s financial statements
Household Spending Data:

1. New transaction data from user accounts at a large **personal finance website** (PFW) from 2010-2014
 - linked credit card and financial accounts
 - 1,400 Alaskan users that receive dividend via direct deposit (treatment group)
 - 2,200 users from state of Washington as control group
 - high-quality data on income, detailed expenditures, and financial assets

2. **Consumer Expenditure Survey** (CE) to check external validity of new data and results
 - neither dataset is representative of Alaskan population
 - PFW over-represents higher-income households
 - CE over-represents lower-income households
Outline:

1. data and quasi-experiment ✓

2. **average excess sensitivity**
 - nonparametric evidence
 - parametric estimate of MPC

3. near-rationality and higher-income hh MPCs

4. liquidity constraints and lower-income hh MPCs

5. external validity using the Consumer Expenditure Survey

6. robustness
 - consumption vs. spending
 - specification checks

7. extensions
 - durables and total expenditure MPCs
 - anticipation effects
 - consumption commitments
Nonparametric Evidence: Average nondurable spending changes per person by month in Alaska vs. Washington
Parametric Evidence: Testing for anticipation effects

\[c_{i,t} - c_{i,t-1} = \sum_s \beta_s \cdot PFD_{i,t-s} + \tau_t + \text{Alaska}_i + \epsilon_{i,t} \]
Parametric Evidence: Testing for anticipation effects

\[c_{i,t} - c_{i,t-1} = \sum_{s} \beta_s \cdot PFD_{i,t-s} + \tau_t + \text{Alaska}_i + \epsilon_{i,t} \]
Parametric Evidence: Cumulative MPC = \(\sum_s MPC(s) \)
Outline:

1. data and quasi-experiment ✓

2. average excess sensitivity ✓
 ▶ nonparametric evidence
 ▶ parametric estimate of MPC

3. near-rationality and higher-income hh MPCs

4. liquidity constraints and lower-income hh MPCs

5. external validity using the Consumer Expenditure Survey

6. robustness
 ▶ consumption vs. spending
 ▶ specification checks

7. extensions
 ▶ durables and total expenditure MPCs
 ▶ anticipation effects
 ▶ consumption commitments
Approximate Loss from Potential Near-Rational Deviations:

Standard, frictionless life-cycle model’s optimal consumption plan

\[
c^*_w = \arg \max_c \left\{ U(c) = \sum_t \delta^t u(c_t) : p'c \leq w \right\}
\]

To derive money-metric proportional wealth loss

- 2nd-order approx. of utility around optimum, \(U(c^*_w) \), and evaluating at deviation \(\tilde{c}_w \) that satisfies budget constraint, \(p'\tilde{c}_w = w \)

- 1st-order approx. of \(U(c^*_w) \) in wealth \(\tilde{w} \), and setting \(U(c^*_\tilde{w}) = U(\tilde{c}_w) \)

\[
Loss(\tilde{c}, c^*) \equiv -\frac{\tilde{w} - w}{w} \approx \frac{\gamma}{2} \sum_t \omega^*_t \left(\frac{\tilde{c}_t - c^*_t}{c^*_t} \right)^2
\]

with utility annuity weights \(\omega^*_t = \frac{\delta^t u(c^*_t)}{U(c^*)} \) and CES sub-utility \(u(c) = \frac{c^{1-\gamma}}{1-\gamma} \)
To apply loss statistic to PFD setting, we need to specify the potential alternative consumption plan \tilde{c}

1. no discounting:
 \[\delta = r = 0 \Rightarrow c^*_t = c^* \]

2. spend PFD fully when paid, independent of dividend size

3. divide finite horizon in equal intervals with T periods between news and payments

\[\Rightarrow \text{Loss}(\tilde{c}, c^*) \approx \left(\frac{\text{PFD}}{c_T} \right)^2 \cdot (T - 1) \cdot \frac{\gamma}{2} \]

with $c_T = T \cdot c^*$
MPC heterogeneity: by potential loss \((PFD/c_T) \)

Average rel. dividend size per quintile: \(PFD/c_T \) = 1.60\%, 2.7\%, 3.7\%, 5.4\%, 10.3\%

Assuming \(T=4 \) quarters and \(\gamma = 2 \): Potential loss (ex-ante) = 0.08\%, 0.2\%, 0.4\%, 0.9\%, 3.2\%
MPC heterogeneity: by potential loss \((PFD/c_T)\)

- Average rel. dividend size per quintile: \(PFD/c_T\) = 1.60%, 2.7%, 3.7%, 5.4%, 10.3%
- Assuming \(T=4\) quarters and \(\gamma = 2\): Potential loss (ex-ante) = 0.08%, 0.2%, 0.4%, 0.9%, 3.2%
 Actual ex-post loss = 0.05%, 0.08%, 0.07%, 0.06%, 0.07%
MPC heterogeneity: by income per person (equivalent scale)

Average income per quintile: 16k, 30k, 42k, 58k, 104k

Table 2 in the paper shows similar results when conditioning on shock size (and vice versa), liquid assets and hh characteristics.
Outline:

1. data and quasi-experiment ✓

2. average excess sensitivity ✓
 ▶ nonparametric evidence
 ▶ parametric estimate of MPC

3. near-rationality and higher-income hh MPCs ✓

4. liquidity constraints and lower-income hh MPCs

5. external validity using the Consumer Expenditure Survey

6. robustness
 ▶ consumption vs. spending
 ▶ specification checks

7. extensions
 ▶ durables and total expenditure MPCs
 ▶ anticipation effects
 ▶ consumption commitments
Liquidity Constraints:

- households in top two quintiles are unconstrained (avg. bank balances of $55k and $84k)
- low MPCs in bottom two income quintiles might suggest that credit constraints do not explain MPCs

Hence, I **focus on the sample of lower-income households** (below median hh income of $75k)

- still sizable liquid assets, but also lots of variation:
 - average bank balances of $17k
 - standard deviation of $7k

- form **three bins**:
 1. households with no or few liquidity ($<$100)
 2. households with 1-3×PFD : potential prec. savings motives
 3. households with more than 3×PFD in bank accounts
MPC heterogeneity: by liquid assets (total bank balances)

- Potential wealth losses predict MPCs for HHs with sufficient liquid assets.
- Low liquid assets continue to predict high MPCs.
MPC heterogeneity: by liquid assets (total bank balances)

![Graph showing MPC heterogeneity by liquid assets](image)

Conclusion:

1. potential wealth losses predict MPCs for HHs with sufficient liquid assets
2. low liquid assets continue to predict high MPCs
Outline:

1. data and quasi-experiment ✓

2. average excess sensitivity ✓
 ▶ nonparametric evidence
 ▶ parametric estimate of MPC

3. near-rationality and higher-income hh MPCs ✓

4. liquidity constraints and lower-income hh MPCs ✓

5. **external validity using the Consumer Expenditure Survey**

6. robustness
 ▶ consumption vs. spending
 ▶ specification checks

7. extensions
 ▶ durables and total expenditure MPCs
 ▶ anticipation effects
 ▶ consumption commitments
External validity implementing same analysis using the CE

Obtain similar results after taking into account

1. fraction of Alaskans that do not receive dividend

2. different sample composition
 - average Alaskan family income in CE is lower ($63k vs $94k)
 - important since MPC is increasing in income
External validity implementing same analysis using the CE

Obtain similar results after taking into account

1. fraction of Alaskans that do not receive dividend
2. different sample composition
 - average Alaskan family income in CE is lower ($63k vs $94k)
 - important since MPC is increasing in income

Panel B: Robustness and CE

<table>
<thead>
<tr>
<th></th>
<th>CE</th>
<th>PFD imputation</th>
<th>sample composition</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>imputed PFD payments in CE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.079**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.036)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PFD x family size</td>
<td></td>
<td>0.190***</td>
<td>-0.021</td>
<td>0.264***</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.030)</td>
<td>(0.048)</td>
<td>(0.040)</td>
</tr>
<tr>
<td>PFD x family size x income/$100,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.187***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.044)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

predicted MPC using average CE income

- Alaska FE YES YES YES YES
- Period FEs YES YES YES YES
- Observations 385,800 46,807 46,807 46,807
- R-squared 0.006 0.107 0.108 0.106
Conclusion

Main findings

▶ substantial response even to large payments
▶ near-rationality helps predict response heterogeneity, especially for higher-income hh (unconstrained)
▶ *actual ex-ante losses* are similar and *small*, consistent with near-rational behavior (*<* 1 day consumption equivalent)
▶ low liquid assets continue to predict high responses, too

Policy implications
Conclusion

Main findings

▶ substantial response even to large payments
▶ near-rationality helps predict response heterogeneity, especially for higher-income hh (unconstrained)
▶ *actual ex-ante losses* are similar and *small*, consistent with near-rational behavior (< 1 day consumption equivalent)
▶ low liquid assets continue to predict high responses, too

Policy implications

▶ results are important for macro policies, since most stabilizers (discretionary and automatic) have similar or lower sizes
▶ targeting low-income low-asset HHs might not be the only or best stimulus program
▶ modeling of near-rational consumption behavior is important next step, i.e., why higher-income hh spend dividend
Appendix
Consumption vs Spending: Spending across different categories

<table>
<thead>
<tr>
<th></th>
<th>all</th>
<th>groceries</th>
<th>personal care</th>
<th>kids activities</th>
<th>gasoline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: Spending across goods</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>PFD payments</td>
<td>0.075*** (0.014)</td>
<td>0.058*** (0.011)</td>
<td>0.007*** (0.002)</td>
<td>0.005*** (0.001)</td>
<td>0.020*** (0.005)</td>
</tr>
<tr>
<td>- Alaska FE</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>- Period FEs</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Observations</td>
<td>46,807</td>
<td>46,807</td>
<td>46,807</td>
<td>46,807</td>
<td>46,807</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.140</td>
<td>0.109</td>
<td>0.013</td>
<td>0.011</td>
<td>0.060</td>
</tr>
</tbody>
</table>

- Alaska FE:
- Period FEs:

Note: Significant levels marked as: ***p < 0.01, **p < 0.05, *p < 0.10.
Specification checks

Panel B: Robustness

<table>
<thead>
<tr>
<th></th>
<th>median</th>
<th>family size</th>
<th>hh charact.</th>
<th>Alaskans only</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFD payments</td>
<td>0.265***</td>
<td>0.282***</td>
<td>0.286***</td>
<td>0.284***</td>
</tr>
<tr>
<td></td>
<td>(0.032)</td>
<td>(0.043)</td>
<td>(0.044)</td>
<td>(0.051)</td>
</tr>
<tr>
<td>- Alaska FE</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>--</td>
</tr>
<tr>
<td>- Period FEs</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>- Family size</td>
<td>--</td>
<td>YES</td>
<td>YES</td>
<td>--</td>
</tr>
<tr>
<td>- Other household characteristics</td>
<td>--</td>
<td>--</td>
<td>YES</td>
<td>--</td>
</tr>
<tr>
<td>Observations</td>
<td>46,807</td>
<td>46,807</td>
<td>46,807</td>
<td>17,899</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.068</td>
<td>0.107</td>
<td>0.109</td>
<td>0.117</td>
</tr>
</tbody>
</table>
MPC Heterogeneity by relative dividend size and income

Table 2: Heterogeneity of MPCs

<table>
<thead>
<tr>
<th>Dep. var.: Δc_{it}, quarterly nondurables and services</th>
<th>average MPC</th>
<th>by shock size</th>
<th>by income</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>PFD payments</td>
<td>0.297***</td>
<td>0.490***</td>
<td>0.744***</td>
</tr>
<tr>
<td></td>
<td>(0.044)</td>
<td>(0.078)</td>
<td>(0.113)</td>
</tr>
<tr>
<td>PFD x shock size</td>
<td>-2.875***</td>
<td>-0.152***</td>
<td>-0.014</td>
</tr>
<tr>
<td></td>
<td>(0.775)</td>
<td>(0.032)</td>
<td>(0.196)</td>
</tr>
<tr>
<td>PFD x shock size quintile</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>squared PFD/100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PFD x income / $100,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PFD x income quintile</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>46,807</td>
<td>46,807</td>
<td>46,807</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.108</td>
<td>0.109</td>
<td>0.110</td>
</tr>
<tr>
<td>- Alaska FE</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>- Period FEs</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>- Shock size</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>- Income</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>- Liquid assets</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>- Household characteristics</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
</tbody>
</table>
MPC Heterogeneity: relative dividend explains heterogeneity, not the squared dividend

Table 2: Heterogeneity of MPCs

<table>
<thead>
<tr>
<th>Dep. var.: Δc_{it}, quarterly nondurables and services</th>
<th>average MPC (1)</th>
<th>by shock size</th>
<th>squared PFD (4)</th>
<th>by income</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>linear (2)</td>
<td>quintile (3)</td>
<td></td>
<td>linear (5)</td>
</tr>
<tr>
<td>PFD payments</td>
<td>0.297***</td>
<td>0.490***</td>
<td>0.288***</td>
<td>0.067</td>
</tr>
<tr>
<td></td>
<td>(0.044)</td>
<td>(0.078)</td>
<td>(0.095)</td>
<td>(0.069)</td>
</tr>
<tr>
<td>PFD x shock size</td>
<td>-2.875***</td>
<td></td>
<td>-0.014</td>
<td>0.485***</td>
</tr>
<tr>
<td></td>
<td>(0.775)</td>
<td></td>
<td>(0.196)</td>
<td>(0.144)</td>
</tr>
<tr>
<td>PFD x shock size quintile</td>
<td></td>
<td>-0.152***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.032)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>squared PFD/100</td>
<td></td>
<td></td>
<td>-0.014</td>
<td>0.143***</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.196)</td>
<td>(0.027)</td>
</tr>
<tr>
<td>PFD x income / $100,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>46,807</td>
<td>46,807</td>
<td>46,807</td>
<td>46,807</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.108</td>
<td>0.109</td>
<td>0.109</td>
<td>0.109</td>
</tr>
<tr>
<td>- Alaska FE</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>- Period FEs</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>- Shock size</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>--</td>
</tr>
<tr>
<td>- Income</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>- Liquid assets</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>- Household characteristics</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
</tbody>
</table>
Smaller Durables. Testing for anticipation effects

\[c_{i,t} - c_{i,t-1} = \sum_s \beta_s \cdot PFD_{i,t-s} + \tau_t + \text{Alaska}_i + \epsilon_{i,t} \]
Smaller Durables. Cumulative MPC = $\sum_s MPC(s)$
Smaller Durables and **Total Expenditures**

Panel A: Spending across goods

<table>
<thead>
<tr>
<th></th>
<th>smaller durables</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cc txns</td>
</tr>
<tr>
<td>PFD payments</td>
<td>(6)</td>
</tr>
<tr>
<td>0.123***</td>
<td>0.185***</td>
</tr>
<tr>
<td>(0.028)</td>
<td>(0.040)</td>
</tr>
</tbody>
</table>

- Alaska FE
- Period FEs

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Observations</td>
<td>46,807</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.060</td>
</tr>
</tbody>
</table>
Hsieh’s specification: Normalization of dividend by family income (current income) vs total expenditures (permanent income) in the CE matters.

<table>
<thead>
<tr>
<th>Dep. var.: $\Delta \ln(c_{it})$, nondurables and services</th>
<th>Hsieh’s specification</th>
<th>All households</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hsieh (2003) replication and extension</td>
<td>normalize w/ total expend.</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
</tbody>
</table>

A: Sample 1980-2001

<table>
<thead>
<tr>
<th>PFD x family size x Alaska / before-tax income</th>
<th>0.003 (0.033)</th>
<th>-0.003 (0.005)</th>
<th>0.123 (0.086)</th>
<th>0.090** (0.036)</th>
<th>0.107** (0.043)</th>
<th>0.052** (0.025)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFD x family size x Alaska / total expenditures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Other household characteristics</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>- Family size</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>- Period FE</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>- Alaska FE</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>- Inverse total expenditures</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
</tbody>
</table>

Number of observations (rounded) | 806 | 800 | 800 | 315200 | 315200 | 281500 |
Number of Alaskan CUs (rounded) | 806 | 800 | 800 | 1700 | 1700 | 1500 |
R-squared | N/A | 0.009 | 0.013 | 0.009 | 0.009 | 0.010 |
Hsieh’s specification: Extending CE sample to 2013.

Dep. var.: $\Delta \ln(c_{it})$, nondurables and services

<table>
<thead>
<tr>
<th></th>
<th>Alaskans only</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>replication</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>and extension</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>normalize w/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>total expend.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>using rest of</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U.S. as control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>attenuation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>factor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IV curr inc w/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>perm inc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B: Sample 1980-2013

PFD x family size x Alaska / before-tax income

- -0.001 (0.004)

PFD x family size x Alaska / total expenditures

- 0.116^* (0.060)
- 0.113^{***} (0.027)
- 0.136^{***} (0.032)

- Other household characteristics
- Family size
- Period FEs
- Alaska FE
- Inverse total expenditures

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of observations (rounded)</td>
<td>1400</td>
<td>1400</td>
<td>559400</td>
<td>559400</td>
<td>458000</td>
<td></td>
</tr>
<tr>
<td>Number of Alaskan CUs (rounded)</td>
<td>1400</td>
<td>1400</td>
<td>2800</td>
<td>2800</td>
<td>2300</td>
<td></td>
</tr>
<tr>
<td>R-squared</td>
<td>0.004</td>
<td>0.007</td>
<td>0.007</td>
<td>0.007</td>
<td>0.009</td>
<td></td>
</tr>
</tbody>
</table>
Hsieh’s specification: Measurement error in current income, and comparison to permanent income (total expenditures).