

Cognitive Constraints on Valuing Annuities

Jeffrey R. Brown Arie Kapteyn Erzo F.P. Luttmer Olivia S. Mitchell

Dana and David Dornsife College of Letters, Arts and Sciences

Under a wide range of assumptions people should annuitize to guard against length-of-life uncertainty

- What are supply side barriers?
 - Adverse selection
 - Incomplete annuity markets (aggregate risk)
- What are demand-side limitations?
 - Bequest motives
 - Formal or informal substitutes (e.g. family)
 - Pretty much any explanation creates new puzzles:
 - E.g. if family provides risk sharing, annuity demand should go up after a spouse dies

Behavioral aspects

- Decisions are complicated and there is little opportunity for learning
- If one does not understand an annuity product, then reluctant to buy it
- Presumably financially more literate individuals will be better at valuing annuities (and may be more willing to buy them).

Data from American Life Panel

- At the time of our survey, the ALP included about 4,000 active panel members.
- Two waves (at least two weeks apart):
 - 1st wave 2478 observations (rr=83.9%)
 - 2nd wave 2355 observations (rr=95%)
- Calculated individual SS entitlements:
 - 4% said not be eligible for SS; asked to assume benefits equal to their age/education/sex mean.
- Our full sample included 2,112 complete responses for both waves 1 and 2.

Our Experiment

- Use two waves of the American Life Panel and ask questions like the following (CV-SELL)
- "In this question, we are going to ask you to make a choice between two money amounts.
- Please click on the option that you would prefer
- Suppose Social Security gave you a choice between:
- (1) Receiving your expected [current] Social Security benefit of \$SSB per month.
- or
- (2) Receiving a Social Security benefit of \$(SSB-X) per month <u>and</u> receiving a <u>one-time payment</u> of \$LS at age Z [one year from now]."

Screen shot: CV-Sell

In this question, we are going to ask you to make a choice between two money amounts.

Please click on the option that you would prefer.

Suppose Social Security gave you a choice between:

Receiving a Social Security benefit of \$1,500 per month and receiving a <u>one-time</u> payment of \$20,000 one year from now.

Receiving your Social Security benefit of \$1,600 per month.

<

Four versions of the annuity valuation tradeoff question

	"SELL"-version		"BUY"-v	"BUY"-version		
	Choice A	Choice BChoice AChoice				
Compensating Variation (CV)	[SSB-X] + LS	[SSB]	[SSB+X] - LS	[SSB]		
Equivalent Variation (EV)	[SSB]+ LS	[SSB+X]	[SSB] - LS	[SSB-X]		

X is typically \$100 per month; this seems a fairly modest amount so one would expect the CV and EV versions to be fairly similar.

Dana and David Dornsife College of Letters, Arts and Sciences

In this question, we are going to ask you to make a choice between two money amounts.

Please click on the option that you would prefer.

Suppose Social Security gave you a choice between:

Receiving your Social Security benefit of \$1,600 per month and making a <u>one-time</u> payment of \$20,000 one year from now to Social Security.

• Receiving a Social security benefit of \$1,500 per month.

<<Back Next>>

Experimental variations

- Order of choices
- LS first or X first
- For CV SELL, vary X: \$100, \$500, SSB, X random from {200, 300, 400, 600, 700, ... SSB-100}
- Starting value of LS
 - Actuarially fair
 - 50% lower
 - 50% higher
- A variant where we explicitly exclude political risk

CV-SELL (median is approximately act. fair)

Dana and David Dornsife College of Letters, Arts and Sciences

CV-SELL (continued)

• 6% reports a valuation of \$1500 or lower

• 12% wants \$200,000 or more

Dana and David Dornsife College of Letters, Arts and Sciences

CV-SELL and CV-BUY

CV-SELL and CV-BUY (continued)

- People place a much higher value on SS when asked to give up some of it than when asked their willingness to pay for some more
- This could be status quo bias/ endowment effect
- Liquidity constraints are an unlikely explanation (e.g. about 82 percent of respondents indicate that they could come up with the lowest lump-sum amount that they declined to pay. Of the 18 percent that indicated that they could not come up with this amount, half said that even if they had had the money, they would have declined to pay the lump sum)

EV-SELL and EV-BUY

Lump Sum Equivalent to a \$100/month Change in Social Security Benefits

EV-SELL and EV-BUY (continued)

• A similar shift as with CV, but slightly less dramatic

 Note that with EV, endowment effects are less likely (since none of the alternatives includes the status quo)

Within Person Variation (correlations)

Pairwise	CV-Sell	EV-Sell	CV-Buy	EV-Buy
correlations	(in logs)	(in logs)	(in logs)	(in logs)
CV-Sell (in logs)	1			
EV-Sell (in logs)	0.31***	1		
CV-Buy (in logs)	-0.11***	-0.17***	1	
EV-Buy (in logs)	-0.11***	-0.15***	0.72***	1

Dana and David Dornsife College of Letters, Arts and Sciences

Financial Literacy Index (1)

- Suppose you had \$100 in a savings account and the interest rate was 2% per year.
- After 5 years, how much do you think you would have in the account if you left the money to grow:
- more than \$102,
- exactly \$102,
- or less than \$102?
- {Do not know; refuse to answer}

Financial Literacy Index (2)

- Imagine that the interest rate on your savings account was 1% per year and inflation was 2% per year.
- After 1 year, would you be able to buy more than, exactly the same as, or less than today with the money in this account?
- More
- The same
- Less
- {Do not know; refuse to answer}

Financial Literacy Index (3)

- Do you think that the following statement is true or false?
- "Buying a single company stock usually provides a safer return than a stock mutual fund."
- True
- False
- {Do not know; refuse to answer}

Six Number Scoring Tests

Here is an example of a simple batch:

- Item Answer
- 78_10 Correct: 9
- 5_32 Correct: 4
- 4 7 10___ Correct: 13

Here is a more challenging one:

- 1_16 64 Correct: 4
- ____19 25 37 61 Correct: 16
- 70___84 Correct: 72, 76 **or** 78, 82
- Based on six such batches and a scoring algorithm a respondent is assigned a score

EV Sell-Buy Spread by Financial Literacy

EV Sell-Buy Spread

Panel A

CDornsife

Dana and David Dornsife College of Letters, Arts and Sciences

EV Sell-Buy Spread by Number Series Score

Panel B

EV Sell-Buy Spread

Dana and David Dornsife College of Letters, Arts and Sciences

EV Sell-Buy Spread by Education

Panel C

Education

Dana and David Dornsife College of Letters, Arts and Sciences

EV Sell-Buy Spread by Cognition Index

Panel D

Cognition Index (quintiles)

Dana and David Dornsife College of Letters, Arts and Sciences

University of Southern California

5

Explaining the Sell-Buy Spread

Dependent Variable: Log CV-Sell - Log CV-Buy							
Explanatory Variables	(1)	(2)	(3)	(4)			
Age 35 to 49	-0.10	0.08	0.09	0.22			
	(0.13)	(0.13)	(0.13)	(0.13)			
Age 50 to 64	0.05	0.33***	0.34***	0.42***			
	(0.12)	(0.12)	(0.12)	(0.13)			
Age 65 and older	0.44***	0.66***	0.68***	0.66***			
	(0.14)	(0.14)	(0.14)	(0.16)			
Cognition index, standardized			-0.59***	-0.42***			
			(0.04)	(0.07)			
Financial literacy index, 0-3 scale		-0.32***					
		(0.06)					
Education index, 1-5 scale		-0.24***					
		(0.04)					
Number series score, stand	ardized	-0.31***					
		(0.05)					
Controls for demographics	No	No	No	Yes			
Controls for experimental	Yes	Yes	Yes	Yes			
Adjusted R ²	0.0270	0.1230	0.1233	0.1677			

USCDornsife

More Randomizations

	Dependent Variable: log CV-Sell				
		Тор	Bottom		
	Entire	quintile of	quintile of	Entire	
	sample	cognition	cognition	sample	
Explanatory Variables		index	index		
Log of starting value	0.37***	0.17	0.92***	0.39***	
	(0.07)	(0.13)	(0.21)	(0.07)	
Asked after larger version	0.70***	0.70***	0.77***	0.69***	
	(0.07)	(0.12)	(0.19)	(0.07)	
Asked in wave 1	0.04	0.01	0.38**	0.05	
	(0.07)	(0.12)	(0.19)	(0.07)	
Lump-sum option shown last	0.09	0.01	-0.03	0.08	
	(0.07)	(0.12)	(0.19)	(0.07)	
Log of starting value				-0.20**	
× Cognition index				(0.08)	
Asked after larger version				-0.09	
× Cognition index				(0.07)	
Asked in wave 1				-0.03	
× Cognition index				(0.07)	
Lump-sum option shown last				0.03	
× Cognition index				(0.07)	
Cognition index				-0.17***	
				(0.04)	
Adjusted R^2	0.0600	0.0832	0.0827	0.0737	

Dana and David Dornsife College of Letters, Arts and Sciences

Explanations

- Starting value:
 - Starting value of size of lump sum
- Asked in wave 1:
 - Whether questions were asked in first or second wave (the experiment was done over two waves)
- Lump sum option shown last
 - If that would show an effect, it would indicate "straight lining"
- Asked after larger version:
 - Order of increment sizes in CV_sell (Xs arranged in increasing order or Xs arranged in decreasing order)

Political risk?

- One version of the annuity valuation question states: *"From now on, please assume that you are absolutely* certain that Social Security will make payments as promised, and that there is no chance at all of any benefit changes in the future other than the trade-offs discussed in the question below."
- We find that the response to the no-political-risk question is a statistically significant 7 percent *lower* than the response to the baseline CV-Sell question.
- Our question may have had the unintended effect of making political risk more salient, rather than less.

Explaining Annuity Valuations

	Dependen	Dependent Variable: Mean of CV-Sell and				
	CV-Buy (in logs)					
Explanatory Variables	(1)	(2)	(3)	(4)		
Log actuarial value	1.02***		0.84***			
	(0.25)		(0.26)			
Log theoretical utility-based						
annuity value		0.04		0.18		
		(0.04)		(0.13)		
	(0.13)	(0.13)	(0.12)	(0.13)		
R-squared	0.060	0.053	0.080	0.076		
Number of observations	2065	2065	2065	2065		
Columna (1) and (2), controls fo		manitalat		nontal		

Columns (1) and (2): controls for age, sex, race, marital status, experimental variation; columns (3) and (4) additional controls for education, income, owns an annuity, home ownership, self-reported health, ever had kids, risk aversion, precaution, expects a return >3%.

Predictive Power of Actuarial Value by Quintile of the Cognition Index

Depe	ndent Variable:					
Mean	of log CV-Sell and	Coefficient on log	p-value on	Root	Adjusted	
log CV-Buy		actuarial value	coefficient=1	MSE	\mathbf{R}^2	Ν
1.	Bottom quintile	0.46	0.483	1.488	0.0922	404
		(0.77)				
2.	Second quintile	0.76	0.686	1.246	0.0259	451
		(0.59)				
3.	Third quintile	1.24**	0.618	1.163	0.0204	392
		(0.49)				
4.	Fourth quintile	0.77	0.650	1.034	0.0498	433
		(0.50)				
5.	Fifth quintile	1.49***	0.340	0.889	0.0677	385
		(0.51)				

Dana and David Dornsife College of Letters, Arts and Sciences

Correlations between buy and sell become more negative for lower values of the cognition index

Panel B: Sell vs. Buy

Dana and David Dornsife College of Letters, Arts and Sciences

Robustness

Dana and David Dornsife College of Letters, Arts and Sciences

Compare results with and without 148 outliers

- We have repeated the analyses omitting 148 extreme values:
 - Results change very little; In particular the negative correlation between buy and sell does not go away

Correlations for 50+

Pairwise correlations	CV-Sell (in logs)	EV-Sell (in logs)	CV-Buy (in logs)	EV-Buy (in logs)
CV-Sell (in logs)	1	(
EV-Sell (in logs)	0.29***	1		
CV-Buy (in logs)	-0.11***	-0.17***	1	
EV-Buy (in logs)	-0.11***	-0.17***	0.72***	1

Dana and David Dornsife College of Letters, Arts and Sciences

EV Sell-Buy Spread by Financial Literacy, 50+

Panel A

Dana and David Dornsife College of Letters, Arts and Sciences

EV Sell-Buy Spread by Number Series Score, 50+

Panel B

Dana and David Dornsife College of Letters, Arts and Sciences

EV Sell-Buy Spread by Education, 50+

Panel C

Education

Dana and David Dornsife College of Letters, Arts and Sciences

EV Sell-Buy Spread by Cognition Index, 50+

Panel D

Dana and David Dornsife College of Letters, Arts and Sciences

Logits indicating that respondent has at least one extreme value at the 80, 85, 90 and 95th percentile

Dana and David Dornsife College of Letters, Arts and Sciences

Extreme values are more likely for

- Older respondents
- Lower educated
- Minorities
- Women
- Non-home owners
- Respondents with lower incomes
- Respondents with lower wealth
- Lower financial literacy

How About Endowment Effects?

A typical utility function would be:

 $U(Y) = \alpha Y - \beta(Y - Ref)\mathbf{1}(Y > Ref)$

 α >0 denotes the marginal utility of SS benefits below the reference level and 0< β < α denotes the decrease in marginal utility of Social Security that occurs at the reference point.

0<β<α<0 denotes the case where marginal utility falls discontinuously at the kind but remains positive.

Apply this to our setting

	"Sell" Vers	sion	"Buy" Version		
	Choice A	Choice B	Choice A	Choice B	
CV	[<i>Ref-100</i>]+ <i>13,000</i>	[Ref]	[<i>Ref</i> +100]–3,000	[<i>Ref</i>]	
EV	[<i>Ref</i>]+13,000	[<i>Ref</i> +100]	[<i>Ref</i>] – <i>3,000</i>	[<i>Ref-100</i>]	

Dana and David Dornsife College of Letters, Arts and Sciences

The Utility Function can Rationalize CV

 $\mathbf{U}(Y) = \alpha Y - \beta (Y - Ref) \mathbf{1}(Y > Ref),$

CV-Sell: U(*Ref*-100) + 13,000=U(Ref) , or $\alpha(Ref-100) + 13000 = \alpha Ref \rightarrow \alpha = 130$

CV-Buy: U(*Ref*+100) - 3,000=U(*Ref*), or
$$\alpha(Ref+100)-100\beta - 3000 = \alpha Ref \rightarrow \beta = 100$$

Dana and David Dornsife College of Letters, Arts and Sciences

But not EV

- $\begin{array}{l} \alpha \ \textit{Ref}+13000 = \alpha(\textit{Ref}+100)-100\beta \rightarrow 13000 = 100(\alpha-\beta) \\ \alpha \ \textit{Ref}-3000 = \alpha(\textit{Ref}-100) \qquad \rightarrow 3000 = 100\alpha \\ \text{Hence: } \alpha = 30, \beta = -100 \\ \text{Recall, for CV we had } \alpha = 130, \beta = 100 \\ \text{Moreover, for EV marginal utility increases above} \end{array}$
 - the reference point: 30-(-100) =130

Discussion

- The task of valuing annuities is very challenging, even for individuals with high cognition and financial literacy.
- Nevertheless, there is a very robust and strong effect of cognitive measures on capability to value annuities at least somewhat coherently
- It appears that an "unwillingness to trade" is strongly related to inability to value the alternatives.
- This phenomenon may explain several "anomalies" in the literature

Center for Economic and Social Research

Thank You

Dana and David Dornsife College of Letters, Arts and Sciences