Do Disaster Experience and Knowledge Affect Insurance Take-up Decisions?

Jing Cai University of Michigan

Changcheng Song National University of Singapore

April 15, 2016

Hypothetical Exp. & Insurance Take-up

< 1 → <

• Introducing technological or financial innovations is important for economic development but diffusion is usually extremely slow

イロト イポト イヨト イヨト

- Introducing technological or financial innovations is important for economic development but diffusion is usually extremely slow
- This paper studies the diffusion of a new financial product: weather insurance
 - Rural households are vulnerable to losses from negative weather shocks
 - Demand for insurance in rural areas is surprisingly low: 4.6% in India

イロト イ理ト イヨト イヨト

- Introducing technological or financial innovations is important for economic development but diffusion is usually extremely slow
- This paper studies the diffusion of a new financial product: weather insurance
 - Rural households are vulnerable to losses from negative weather shocks
 - Demand for insurance in rural areas is surprisingly low: 4.6% in India
- Using a field experiment in rural China, we study the effect of two factors on weather insurance adoption:

イロト イポト イヨト イヨト

- Introducing technological or financial innovations is important for economic development but diffusion is usually extremely slow
- This paper studies the diffusion of a new financial product: weather insurance
 - Rural households are vulnerable to losses from negative weather shocks
 - Demand for insurance in rural areas is surprisingly low: 4.6% in India
- Using a field experiment in rural China, we study the effect of two factors on weather insurance adoption:
 - Experience of disasters: use insurance games to simulate hypothetical experience with disasters

ヘロト 不得 トイヨト 不同ト

- Introducing technological or financial innovations is important for economic development but diffusion is usually extremely slow
- This paper studies the diffusion of a new financial product: weather insurance
 - Rural households are vulnerable to losses from negative weather shocks
 - Demand for insurance in rural areas is surprisingly low: 4.6% in India
- Using a field experiment in rural China, we study the effect of two factors on weather insurance adoption:
 - Experience of disasters: use insurance games to simulate hypothetical experience with disasters
 - Knowledge of expected returns: reveal true probability of disasters

イロト イポト イヨト イヨト

I. Insurance demand literature:

- Existing explanations for low insurance demand:
 - Cai et al 2015: Lack of financial literacy
 - Cole et al. 2013: Liquidity constraint, lack of trust
 - Bryan 2010: Ambiguity aversion

I. Insurance demand literature:

- Existing explanations for low insurance demand:
 - Cai et al 2015: Lack of financial literacy
 - Cole et al. 2013: Liquidity constraint, lack of trust
 - Bryan 2010: Ambiguity aversion
- This paper:
 - Shows that the lack of experience of disasters and insufficient understanding of the true expected value of the insurance product contribute to the low take-up

• • • • • • • • •

II. Literature on the effect of experience:

- Existing literature on the effect of experience:
 - Consumer behaviors (Haselhuhm et al. 2009)
 - Financial market (Malmendier and Nagel 2011)

II. Literature on the effect of experience:

- Existing literature on the effect of experience:
 - Consumer behaviors (Haselhuhm et al. 2009)
 - Financial market (Malmendier and Nagel 2011)
- This paper:
 - Analyzes the effect of personal experience on insurance demand and disentangles it from other confounding effects
 - Shows that even simulated hypothetical experience has an impact on real household financial decision making

• I. Background

- II. Experimental design
- III. Estimation strategies and results
- IV. Conclusion

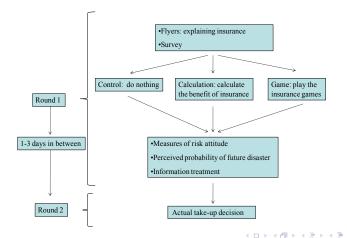
イロト イポト イヨト イヨト

э

- A program initiated by the People's Insurance Company of China (PICC)
- Insurance contract:
 - Price : 3.6 RMB after subsidy (actuarially fair price 12 RMB = 2 dollars)
 - Responsibility: 30% or more loss in yield caused by: Heavy rain, flood, windstorm, drought, etc.
 - Indemnity Rule: 200 RMB \times Loss%
- The maximum payout covers 30% of the gross rice production income or 70% of the production cost

I. Background: Experimental Sites

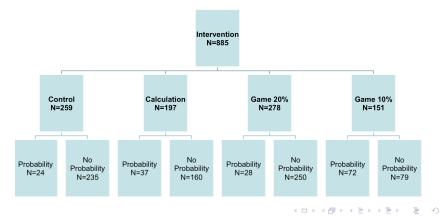
- 16 randomly selected villages with 1700 households in Jiangxi, China
- On average, around 70% household income comes from rice production
- No similar types of insurance provided before


- I. Background
- II. Experimental design
- III. Estimation strategies and results
- IV. Conclusion

イロト イポト イヨト イヨト

э

II.1. Experimental Design: Timeline


- Two rounds of household visit: 1 or 3 days gap
 - Round1: Distribute and explain insurance flyer + Survey + Intervention
 - Round2: Make real take-up decision

Hypothetical Exp. & Insurance Take-up

II.2. Experimental Design: Overview

- The experiment has a 4 by 2 design:
 - Four groups that differ in how the insurance contract is explained: control, calculation, game (10% or 20%)
 - The information treatment about the true probability of disasters

Hypothetical Exp. & Insurance Take-up

II.2. Experimental Design: Calculation Treatment

• Calculation treatment: Explain insurance => Survey (background, risk aversion, disaster perception, etc.) => calculation of insurance benefits

Number of disasters in 10 years	Total ten years' income if you purchased insurance every year	Total ten years' income if you did not purchased insurance in any year
0	99640=10000-3.6*10mu*10year	100000=1000*10mu*10year
1	96440=96000-360+200*40%*10mu*1year	96000=100000-400*10mu*1year
2	93240=92000-360+200*40%*10mu*2year	92000=100000-400*10mu*2year
3 90040=88000-360+200*40%*10mu*3year 88000=100000-400*10		88000=100000-400*10mu*3year

II.2. Experimental Design: Calculation Treatment

- Calculation treatment: Explain insurance => Survey (background, risk aversion, disaster perception, etc.) => calculation of insurance benefits
 - Assume:
 - Production area equals 10mu
 - Total income equals 10000 RMB if no disaster
 - Total income equals 6000 RMB if disaster happened

Number of disasters in 10 years	Total ten years' income if you purchased insurance every year	Total ten years' income if you did not purchased insurance in any year
0	99640=10000-3.6*10mu*10year	100000=1000*10mu*10year
1	96440=96000-360+200*40%*10mu*1year	96000=100000-400*10mu*1year
2	93240=92000-360+200*40%*10mu*2year	92000=100000-400*10mu*2year
3	90040=88000-360+200*40%*10mu*3year	88000=100000-400*10mu*3year

II.2. Experimental Design: Calculation Treatment

- Calculation treatment: Explain insurance => Survey (background, risk aversion, disaster perception, etc.) => calculation of insurance benefits
 - Assume:
 - Production area equals 10mu
 - Total income equals 10000 RMB if no disaster
 - Total income equals 6000 RMB if disaster happened
 - Calculate income in 10 years if there are 0/1/2/3 disasters
 - Compare between:

Always purchase insurance vs. always not purchase insurance

Number of disasters in 10 years	Total ten years' income if you purchased insurance every year	Total ten years' income if you did not purchased insurance in any year
0	99640=10000-3.6*10mu*10year	100000=1000*10mu*10year
1	96440=96000-360+200*40%*10mu*1year	96000=100000-400*10mu*1year
2	93240=92000-360+200*40%*10mu*2year	92000=100000-400*10mu*2year
3	90040=88000-360+200*40%*10mu*3year	88000=100000-400*10mu*3year

• Game treatment: Explain insurance => Survey (background) => Insurance game => Survey (risk aversion, disaster perception)

Up-take	Disaster	Income (RMB)	Note
NO	NO	10000=1000*10 mu	Assume when there's no disaster, the gross income per mu is 1000 RMB
NO	YES	6000=600*10	Assume if a 40% disaster happened, the gross income per mu is 600 RMB
YES	NO	9964=1000*10-3.6*10	Assume when there's no disaster, the gross income per mu is 1000 RMB, and the premium is 36 RMB in total.
YES	YES	6764 = 600*10 - 36 + 200*40%*10	Assume if a 40% disaster happened, the gross income per mu is 600 RMB, and the premium is 36 RMB in total, The payout per mu is 200*40%=80 RMB.

イロト イ理ト イヨト イ

- Game treatment: Explain insurance => Survey (background) => Insurance game => Survey (risk aversion, disaster perception)
 - Hypothetical decisions for 10 years (10 round game)
 - Each round: Insurance decision => draw card => calculate income
 - Assume:
 - Production area equals 10mu
 - Total income equals 10000 RMB if no disaster
 - Total income equals 6000 RMB if disaster happened

Up-take	Disaster	Income (RMB)	Note
NO	NO	10000=1000*10 mu	Assume when there's no disaster, the gross income per mu is 1000 RMB
NO	YES	6000=600*10	Assume if a 40% disaster happened, the gross income per mu is 600 RMB
YES	NO	9964=1000*10-3.6*10	Assume when there's no disaster, the gross income per mu is 1000 RMB, and the premium is 36 RMB in total.
YES	YES	6764 = 600*10 - 36 + 200*40%*10	Assume if a 40% disaster happened, the gross income per mu is 600 RMB, and the premium is 36 RMB in total, The payout per mu is 200*40%=80 RMB.

イロト イポト イヨト イヨト

• Repeat the game for 10 times:

Year	Do you buy insurance?	Have you experienced disaster in this year?	Income in this year
2011			
2012			
2020			

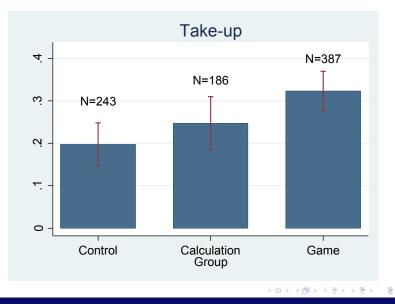
イロト イポト イヨト イヨト

• Repeat the game for 10 times:

Year	Do you buy insurance?	Have you experienced disaster in this year?	Income in this year
2011			
2012			
2020			

- Gave households the same information as in the calculation group
- Compare the farmer's income if always purchase insurance and income if always not purchase insurance

(4 個) トイヨト イヨト


- Randomize whether househoolds are informed of the actual probability of disasters
- Test whether the treatment reduces uncertainty about the value of insurance and consequently increases the insurance take-up

イロト イ理ト イヨト イヨト

- I. Background
- II. Experimental design
- III. Estimation strategies and results
- IV. Conclusion

イロト イポト イヨト イヨト

э

Hypothetical Exp. & Insurance Take-up

• Estimate the effect of calculation/game on take-up:

$$buy_{ij} = \alpha_j + \alpha_k + \beta_g T g_{ij} + \beta_c T c_{ij} + \phi X_{ij} + \epsilon_{ij}$$
(1)

• Estimate the effect of calculation/game on take-up:

$$buy_{ij} = \alpha_j + \alpha_k + \beta_g T g_{ij} + \beta_c T c_{ij} + \phi X_{ij} + \epsilon_{ij}$$
(1)

- *buy_{ij}* is the indicator that equals 1 if household i in village j buys insurance
- Tg_{ij} is an indicator of the game treatment
- Tc_{ij} is an indicator of the calculation treatment
- X_{ij} are household characteristics
- α_j and α_k are village fixed effects and enumerator fixed effects, respectively

イロト イポト イヨト イ

• Playing game has a large and significant effect on actual take-up: take-up increased by 46%

Specification:	Logistic regression		
Dep. Var.:	Individual Adoption of Insurance		
Sample:	All Sample		
	(1)	(2)	(3)
Game (1=Yes, 0=No)	0.091	0.096	0.092
	(0.039)**	(0.037)***	(0.038)**
Calculation (1=Yes, 0=No)	0.024	0.028	0.030
	(0.044)	(0.043)	(0.041)
Probability (1=Yes, 0=No)	0.043	0.050	0.046
	(0.050)	(0.051)	(0.049)
%Loss Last Year (self report)		0.216	0.208
		(0.100)**	(0.106)**
Age			0.009
-			(0.011)
Education			0.039
			(0.018)**
Household Size			-0.015
			(0.005)***
Area of Rice Production (mu)			0.0015
			(0.0138)
Obs.	816	816	816
Pseudo R-square	0.0927	0.0975	0.1076

Table 2. The Effect of Game Treatment on Insurance Take-up

Hypothetical Exp. & Insurance Take-up

III.2. Estimation Strategy and Results: Channels

• Possible explanations of the game effect:

III.2. Estimation Strategy and Results: Channels

- Possible explanations of the game effect:
 - 1. Change of risk attitudes

III.2. Estimation Strategy and Results: Channels

- Possible explanations of the game effect:
 - 1. Change of risk attitudes
 - 2. Change of perceived probability of disasters

- Possible explanations of the game effect:
 - 1. Change of risk attitudes
 - 2. Change of perceived probability of disasters
 - 3. Learning the insurance benefits

< □ ▶ < /i⊉ ▶ .

- Possible explanations of the game effect:
 - 1. Change of risk attitudes
 - 2. Change of perceived probability of disasters
 - 3. Learning the insurance benefits
 - 4. Experience

• • • • • • • • •

III.2.1. Channels: Change of Risk Attitudes I

• Estimation equations:

$$buy_{ij} = \alpha_{2j} + \beta_{risk} risk_{ij} + \beta_{prob} prob_{ij} + \delta_{ij}$$
⁽²⁾

$$risk_{ij} = \alpha_{3j} + \gamma_{gr} T g_{ij} + \gamma_{cr} T c_{ij} + \eta_{ij}$$
(3)

$$risk_{ij} = \alpha_{4j} + \beta_{dr} disaster_{ij} + \omega_{ij} \tag{4}$$

э

III.2.1. Channels: Change of Risk Attitudes I

• Estimation equations:

$$buy_{ij} = \alpha_{2j} + \beta_{risk} risk_{ij} + \beta_{prob} prob_{ij} + \delta_{ij}$$
(2)

$$risk_{ij} = \alpha_{3j} + \gamma_{gr} T g_{ij} + \gamma_{cr} T c_{ij} + \eta_{ij}$$
(3)

$$risk_{ij} = \alpha_{4j} + \beta_{dr} disaster_{ij} + \omega_{ij} \tag{4}$$

• Hypothesis:

 $\beta_{risk}\gamma_{gr} = \beta_g$ 1.48 $\beta_{risk}\beta_{dr} = \beta_g$ (1.48 is the average number of disasters experienced during games)

III.2.1. Channels: Change of Risk Attitudes II

• The game treatment has no significant effect on risk aversion:

Specification:	OLS Regression			
Dep. Var.:	Insurance Take-up	ake-up Risk Aversion		
Sample:	Control & Calculation All Sample (1) (2)		Game (3)	
Risk Aversion	0.035 (0.016)**			
Perceived Probability of	0.215			
Future Disaster ([0.1])	(0.110)*			
Game		-0.024		
(=1 if Yes, =0 if No)		(0.182)		
Calulation		0.055		
(=1 if Yes, =0 if No)		(0.165)		
Number of Hypothetical Disasters			0.080	
			(0.138)	
Obs.	329	697	320	
R-square	0.1397	0.1932	0.2022	

• Hypothesis $\beta_{risk}\gamma_{gr} = \beta_g$ is rejected at 5% level (p=0.039)

• Hypothesis $1.48\beta_{dr}\gamma_{gr} = \beta_g$ is rejected at 5% level (p=0.044)

III.2.2. Channels: Change of Perceived Disaster I

• Estimation equations:

$$buy_{ij} = \alpha_{2j} + \beta_{risk} risk_{ij} + \beta_{prob} prob_{ij} + \delta_{ij}$$
(5)

$$prob_{ij} = \alpha_{3j} + \gamma_{gp} T g_{ij} + \gamma_{cp} T c_{ij} + \eta_{ij} \tag{6}$$

$$prob_{ij} = \alpha_{4j} + \beta_{gp} disaster_{ij} + \omega_{ij} \tag{7}$$

• Hypothesis:

 $\beta_{prob}\gamma_{gp} = \beta_g$ 1.48 $\beta_{dp}\gamma_{gp} = \beta_g$ (1.48 is the average number of disasters experienced during games)

III.2.2. Channels: Change of Perceived Disaster II

• The game treatment has a significantly positive effect on perceived probability of future disasters:

Specification:	OLS Regression			
Dep. Var.:	Insurance take-up	Perceived Prob. of Future Disaste		
Sample:	Control & Calculation (1)	All Sample (2)	Game (3)	
Risk Aversion	0.035 (0.016)**			
Perceived Probability of	0.215			
Future Disaster ([0.1])	(0.110)*			
Game		-0.015		
(=1 if Yes, =0 if No)		(0.008)*		
Calulation		-0.011		
(=1 if Yes, =0 if No)		(0.009)		
Number of Hypothetical Disasters			0.003	
			(0.008)	
Obs.	329	667	310	
R-square	0.1397	0.0990	0.1896	

• Both hypotheses are rejected at 5% level

III.2.3. Channels: Learning Insurance Benefits I

Two strategies:

- 1. Compare the effects of the game and calculation treatments
 - The calculation treatment does not have significant effect on take-up
 - Insignificant difference between game and calculation treatment: suggestive evidence that learning benefit is not the main channel

Specification:	I	Logistic regression			
Dep. Var.:	Insurance 7	Insurance Take-up (=1 if Yes, =0 if No)			
	(1)	(2)	(3)		
Game	0.092	0.096	0.092		
(=1 if Yes, =0 if No)	(0.039)**	(0.037)***	(0.038)**		
Calculation	0.025	0.029	0.031		
(=1 if Yes, =0 if No)	(0.043)	(0.042)	(0.040)		
%Loss Last 3 Years		0.207	0.200		
		(0.104)**	(0.110)*		
Age			0.008		
			(0.011)		
Education			0.039		
			(0.017)**		
Household Size			-0.015		
			(0.005)***		
Production Area (mu)			0.002		
			(0.014)		
Wald Test: β _g =β _c					
p-value	0.1376	0.1328	0.1568		
Obs.	816	816	816		
Pseudo R-square	0.0918	0.0962	≤ 0,1065 ≤ ₫		

III.2.3. Channels: Learning Insurance Benefits II

2. Test the effect of Game treatment on insurance knowledge

$$Knowledge_{ij} = \alpha_j + \alpha_k + \beta_g Tg_{ij} + \phi X_{ij} + \epsilon_{ij}$$
(8)

- The effect of game treatment on knowledge is insignificant
- Learning benefit is not the main channel

Specification:	OLS Regression All Sample Insurance Benefit Question 1 Insurance Benefit Question 2			
Sample				
Dep. Var.:				
	(1)	(2)	(3)	(4)
Game (1=Yes, 0=No)	0.00879	0.031	0.0158	0.0248
	(0.00975)	(0.0241)	(0.0219)	(0.0232)
%Loss Last Year (self report)	-0.102		0.0385	
	(0.0807)		(0.0636)	
Number of Hypothetical Disasters		-0.0176		-0.0092
		(0.0177)		(0.00841)
Obs.	658	650	657	649
R-square	0.7692	0.7589	0.6882	0.6757

Table 5. The Effect of Game Treatment on Insurance Knowledge

III.2.4. Channels: Hypothetical Experience I

$$buy_{ij} = \alpha_j + \beta_{disaster} disaster_{ij} + \delta_{ij} \tag{9}$$

disasterij: number of hypothetical disasters experienced during games

III.2.4. Channels: Hypothetical Experience I

$$buy_{ij} = \alpha_j + \beta_{disaster} disaster_{ij} + \delta_{ij} \tag{9}$$

*disaster*_{ij}: number of hypothetical disasters experienced during games
The more disaster experienced, the more likely to buy insurance

Specification:	Logistic Regression				
Dep. Var.:	Individual Adoption of Insurance				
	(1) (2)		(3)		
Game	0.010		0.047		
	(0.059)		(0.046)		
Calculation	0.042		0.044		
	(0.046)		(0.045)		
Number of Hypothetical Disasters	0.059				
	(0.031)*				
Game and No Disaster		0.030			
		(0.060)			
Game and One Disaster		0.046			
		(0.045)			
Game and Two Disasters		0.137			
		(0.043)***			
Game and Three or More Disasters		0.133			
		(0.066)**			
Number of Hypothetical Disasters in First			-0.019		
Half of Game (2011-2015)			(0.024)		
Number of Hypothetical Disasters in			0.070		
Second Half of Game (2016-2020)			(0.033)**		
Obs.	804	804⊐ ▶ ∢ ₫	⊇ ▶ < 804▶ < Ξ ▶		

III.2.4. Channels: Hypothetical Experience II

$$buy_{ij} = \alpha_j + \beta_0 disaster 0_{ij} + \beta_1 disaster 1_{ij} + \beta_2 disaster 2_{ij} + \beta_3 disaster 3_{ij} + \epsilon_{ij}$$
(10)

Specification:	Logistic Regression			
Dep. Var.:	Individual Adoption of Insurance			
	(1)	(2)	(3)	
Game	0.010		0.047	
	(0.059)		(0.046)	
Calculation	0.042		0.044	
	(0.046)		(0.045)	
Number of Hypothetical Disasters	0.059			
	(0.031)*			
Game and No Disaster		0.030		
		(0.060)		
Game and One Disaster		0.046		
		(0.045)		
Game and Two Disasters		0.137		
		(0.043)***		
Game and Three or More Disasters		0.133		
		(0.066)**		
Number of Hypothetical Disasters in First			-0.019	
Half of Game (2011-2015)			(0.024)	
Number of Hypothetical Disasters in			0.070	
Second Half of Game (2016-2020)			(0.033)**	
Obs.	804	804	804	
Pseudo R-square	0.0599	0.0864	0.0884	

III.2.4. Channels: Hypothetical Experience III

$$buy_{ij} = \alpha_j + \beta_{f5} disaster first 5_{ij} + \beta_{15} disaster last 5_{ij} + \delta_{ij}$$
(11)

Specification:	Logistic Regression				
Dep. Var.:	Individual Adoption of Insurance				
	(1)	(2)	(3)		
Game	0.010		0.047		
	(0.059)		(0.046)		
Calculation	0.042		0.044		
	(0.046)		(0.045)		
Number of Hypothetical Disasters	0.059				
	(0.031)*				
Game and No Disaster		0.030			
		(0.060)			
Game and One Disaster		0.046			
		(0.045)			
Game and Two Disasters		0.137			
		(0.043)***			
Game and Three or More Disasters		0.133			
		(0.066)**			
Number of Hypothetical Disasters in First		()	-0.019		
Half of Game (2011-2015)			(0.024)		
Number of Hypothetical Disasters in			0.070		
Second Half of Game (2016-2020)			(0.033)**		
Obs.	804	804	804		
Pseudo R-square	0.0599	0.0864	0.0884		

Hypothetical Exp. & Insurance Take-up

Image: A matched black

ヨトメヨト

э

III.3. The Impact of Probability Treatment

• The probability treatment increases insurance take-up significantly

Logistic Regression						
Individual Adoption of Insurance						
Control		All Sample				
(1)	(2)	(3)	(4)			
0.294	0.298	0.184	0.183			
(0.136)**	(0.141)*	(0.0134)	(0.0138)			
		0.120	0.119			
		(0.0395)***	(0.0416)**			
		0.0105	0.0100			
		(0.0438)	(0.0406)			
		-0.209	-0.214			
		(0.155)	(0.164)			
		-0.0293	-0.0186			
		(0.172)	(0.179)			
243	243	816	816			
0.1609	0.1900	0.1100	0.1268			
	Con (1) 0.294 (0.136)**	Individual Ad <u>Control</u> (1) (2) 0.294 0.298 (0.136)** (0.141)* 243 243	Individual Adoption of Insura <u>Control</u> All Sa (1) (2) (3) 0.294 0.298 0.184 (0.136)** (0.141)* (0.0134) 0.120 (0.0395)*** 0.0105 (0.0438) -0.209 (0.155) -0.0293 (0.172) 243 243 816			

Table 8. The Effect of Probability Treatment on Insurance Take-up

Hypothetical Exp. & Insurance Take-up

Image: A matrix and a matrix

.∃...>

III.3. The Impact of Probability Treatment

- The probability treatment increases insurance take-up significantly
- However, the game treatment effect is much smaller with the probability treatment: farmers may value the game less if it does not coincide with the real disaster probability

Specification:	Logistic Regression			
Dep. Var.:	Individual Adoption of Insurance			
Sample:	Control		All Sample	
	(1)	(2)	(3)	(4)
Probability (1=Yes, 0=No)	0.294	0.298	0.184	0.183
	(0.136)**	(0.141)*	(0.0134)	(0.0138)
Game (1=Yes, 0=No)			0.120	0.119
			(0.0395)***	(0.0416)**
Calculation (1=Yes, 0=No)			0.0105	0.0100
			(0.0438)	(0.0406)
Game × Probability			-0.209	-0.214
-			(0.155)	(0.164)
Calculation × Probability			-0.0293	-0.0186
			(0.172)	(0.179)
Obs.	243	243	816	816
R-square	0.1609	0.1900	0.1100	0.1268

Table 8. The Effect of Probability Treatment on Insurance Take-up

V. Conclusion

- This paper studies the impact of disaster experience and knowledge on weather insurance take-up
 - Playing an insurance game incrases the real insurance take-up rate by 46%, and exposure to hypothetical disasters is the main explanation
 - Providing information about the payout probability has a strong positive effect on insurance take-up
 - When households receive both treatments, the probability information has a greater impact on take-up than does the disaster experience

イロト イ理ト イヨト イヨト

V. Conclusion

- This paper studies the impact of disaster experience and knowledge on weather insurance take-up
 - Playing an insurance game incrases the real insurance take-up rate by 46%, and exposure to hypothetical disasters is the main explanation
 - Providing information about the payout probability has a strong positive effect on insurance take-up
 - When households receive both treatments, the probability information has a greater impact on take-up than does the disaster experience
- Policy implications:
 - Interventions similar as the game treatment can be used to influence the adoption of other financial products that involve uncertainty and require some time to experience the gain or loss
 - Providing information on the true expected values of financial assets could be important in improving the effectiveness of financial education

ヘロト 人間 とくほとくほとう